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Abstract—Many finance, physics, and engineering phenomena
are modeled by continuous-time dynamical systems driven by
highly irregular (stochastic) inputs. A powerful tool to perform
time series analysis in this context is rooted in rough path
theory and leverages the so-called Signature Transform. This
algorithm enjoys strong theoretical guarantees but is hard to
scale to high-dimensional data. In this paper, we study a recently
derived random projection variant called Randomized Signature,
obtained using the Johnson-Lindenstrauss Lemma. We provide
an in-depth experimental evaluation of the effectiveness of the
Randomized Signature approach, in an attempt to showcase the
advantages of this reservoir to the community. Specifically, we
find that this method is preferable to the truncated Signature
approach and alternative deep learning techniques in terms of
model complexity, training time, accuracy, robustness, and data
hungriness.

Index Terms—stochastic differential equations, reservoir com-
puting, signature transform, randomized signatures

I. INTRODUCTION

We consider dynamical systems that are described by the
stochastic differential equation

dYt = f(Yt)dXt, Y0 = y0 ∈ Rm, (1)

where f(·) : Rm → Rd is an unknown smooth map, and
X : [0, T ] → Rd is a piece-wise smooth stochastic process,
also known as control, forcing the system evolution1. The
problem under investigation consists in predicting the solution
Ȳt of (1) given a new, unseen control X̄t, using an algorithm
trained on a set of control-output trajectories. Two main
challenges are the fact that data is observed on a possibly
unevenly spaced time grid, and that controls are often highly
irregular (we will mainly focus on rough paths, which are
formally defined, e.g., in [30], Chapter 3). This setting is
of particular interest, e.g., in high-frequency trading, as
tick-level prices are not observed regularly in time [14], and
where fundamental quantities such as the volatility of prices
are rough [17].

1For instance, letting d = 2, one can have Xt = [t, Wt]⊤, where Wt

is a 1−dimensional Wiener process.

A first strategy consists in performing system identifica-
tion, i.e., learning f(·) from data. The theory is well es-
tablished for the particular case of linear systems, both for
parametric [27] and non-parametric approaches leveraging the
theory of Reproducing Kernel Hilbert Spaces [1], [39], and
is mainly deployed for discrete-time systems; its extension
to the continuous-time case is investigated, e.g., in [16] and
references therein. Nonlinear system identification is an active
area of research, and the methods currently deployed revolve
around kernel techniques [38], sparse regression [4], random
features [40], [41], and deep neural networks (see, e.g., [33]
for discrete-time models, and [12] for continuous-time ones).

The advantage of estimating f is that it allows for retrieving
the output trajectory also for different initial conditions and
different time intervals. However, solving the identification
problem of a general continuous-time system is typically hard
if observations are made on an uneven time grid and f is
nonlinear. Moreover, if the control signal is highly irregular,
as typical in finance and physical models [25], [28], integrating
the differential equation with the estimated f is far from
trivial. Thus, an alternative viewpoint consists in focusing on
estimating the solution Yt directly. To this aim, deep neural
networks have been successfully deployed [11], [15]: see also
the works on neural controlled differential equations [24], [35].
Nevertheless, their outstanding performance comes at the price
of over-parametrization, data hungriness, and expensive train-
ing cost [32], [36]. Furthermore, the resulting models learn
representations of the input data that are highly specialized to
the training task. In addition, the remarkable performance of
these methods is often the result of a substantial engineering
effort and is not supported by theoretical results.

Another approach consists in reservoir computing [43], in
which learning is divided into two phases: first, data go
through an untrained reservoir that extracts a set of task-
independent features; second, a simple and efficient-to-train
linear map (the readout map) projects such features into the
desired output. An example is Echo State Networks [23]. The
critical point is that the design of the reservoir determines the
expressiveness of the features, and several alternatives can be
found in the literature (see [18] and references therein).
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A powerful reservoir is offered by the Signature Transform,
often simply referred to as Signature, stemming from rough
path theory [13], [20]. The Signature of a path is an infinite-
dimensional tensor. Intuitively, it consists of enhancing the
path with additional curves corresponding to iterated integrals
of the curve with itself. A strong mathematical result supports
the choice of the Signature as a reservoir: it can be shown
[26] that the solution of a rough differential equation can be
approximated arbitrarily well by a linear map of the Signature
of the controls. On the other hand, it is often the case that
this reservoir is very high-dimensional, and hence particularly
expensive to calculate and computationally intractable for use
in downstream tasks. Furthermore, the high dimensionality of
the Signature poses additional challenges for modern gradient-
based optimizers, as convergence rates suffer from a linear
dependence in the model dimension [3].
Inspired by the remarkable theoretical properties of the Sig-
nature reservoir and motivated to fix its practical pitfalls, the
so-called Randomized Signatures was introduced in [7], [8].
The Randomized Signature is obtained by numerically inte-
grating a set of random linear stochastic differential equations
driven by the control path. Importantly, based on a non-trivial
Johnson-Lindenstraus argument, [8] showed that calculating
the Randomized Signature of a path this way is equivalent to
projecting its Signature using a random linear operator. These
random features provably retain the expressive power of Signa-
ture, yet dramatically reduce the computational burden. In fact,
differently from [34], calculating the Randomized Signature
does not require computing the (truncated) Signature of the
path: the projection can be obtained directly in the compressed
space. However, the lack of an in-depth experimental study
comparing its performance to Signature, Reservoir Computing,
and Deep Learning limits its popularity to the theoretical
community.

The contribution of the present paper is twofold: first, we
extend the theoretical analysis of Randomized Signature, using
results from Malliavin Calculus to prove that the Randomized
Signature has the power of representing the behavior of any
dynamical system of interest; second, we provide a rich set
of experiments showing that this approach achieves perfor-
mances comparable with, if not superior to, competitive Deep
Learning, Reservoir Computing, and Signature-based models.
In particular, we find that Randomized Signature requires less
trainable parameters, i.e. has lower model complexity, which
in turn implies a reduced training time and memory usage. In
terms of performance, our models are more accurate out-of-
sample, more robust, and less data-hungry – especially in high
dimensions.

Notation: The canonical basis for Rd will be denoted
as {e1, . . . , ed}. The symbol ⊗ represents a tensor product:
e.g., ei ⊗ ej is the d × d matrix of all zeros except for the
term at the i−th row and j−th columns, which equals 1. In
general,

(
Rd

)⊗l
is the space of tensors of shape (d, . . . , d)

given by Rd ⊗ · · · ⊗ Rd for l times. The tensor algebra on
Rd, and its truncated version of order M ≥ 0, are written

as T
(
Rd

)
:=

∏∞
l=0

(
Rd

)⊗l
and T M

(
Rd

)
:=

∏M
l=0

(
Rd

)⊗l
,

respectively. Given two vector fields V1 and V2 mapping Rk

into itself, and denoting with DVi(z) the Fréchet derivative
of Vi evaluated at z ∈ Rk, the Lie bracket is defined as
[V1, V2](z) = DV1(z)V2(z)−DV2(z)V1(z).

II. BACKGROUND

Referring to the stochastic differential equation (1), we let
the control X =

(
X1, · · · , Xd

)
: [0, T ] → Rd be a continuous

and piece-wise smooth path – in particular, we will mainly
regard X as a rough path2 on Rd. We start by defining its
Signature, which is a tensor of iterated integrals of X with
itself.

Definition II.1 (Signature). For any t ∈ [0, T ], the Signature
of X : [0, T ] → Rd on [0, t] is the countable collection St :=(
1, S1

t , S
2
t , . . .

)
∈ T

(
Rd

)
where, for each l ≥ 1, the entries

Sl
t are defined as

Sl
t :=

∑
(i1,...,il)

∈{1,...,d}l

(∫
0≤s1≤···≤sl≤t

dXi1
s1 . . . dX

il
sl

)
ei1⊗· · ·⊗eil .

Given that this object is infinite-dimensional, to actually
compute the reservoir, one can use only a finite amount of
terms Sl

t. Therefore, we consider the following object:

Definition II.2 (Truncated Signature). The Truncated Signa-
ture of X of order M ≥ 0 is defined as

SM
t :=

(
1, S1

t , . . . , S
M
t

)
∈ T M

(
Rd

)
. (2)

To give an intuition on how to compute the (truncated)
Signature, we provide the following

Example II.3. Let X : [0, T ] → R; then S1
t =

∫ t

0
dXs, which

is exactly Xt−X0. To get S2
t , we instead have to compute the

following iterated integral: S2
t =

∫ t

0

(∫ v

0
dXs

)
dXv . Iterated

integrals of higher order Sj
t are computed in a similar way, by

iteratively integrating the path j times. As a practical example,
let Xt = t. Then it is easy to see that Sj

t = tj

j! . Now let
Yt be an analytic function of time for which we have Yt =∑∞

j=0 Y
(j)
0

tj

j! . Taylor’s theorem combined with the previous
computation implies that Y can be approximated as a linear
map of the Truncated Signature of t. Finally, note that Sj

t gets
smaller and smaller in magnitude as j increases, which can be
proven in general. This suggests that the Truncated Signature
can be safely used to approximate Y . □

The following result given in [8] proves that the solutions of
differential equations of the type given in (1) can be expanded
in terms of the iterated integrals stored in the Signature:

Theorem II.4 (Theorem 2.3, [8]). Let Vi : Rm → Rm, i =
1, . . . , d be vector fields regular enough such that dYt =∑d

i=1 V
i (Yt) dX

i
t , Y0 = y ∈ Rm, admits a unique solution

2For the rigorous definition, we refer the reader to, e.g., [28], [29], due
to space limitations. For ease of visualization, one can think of X as a
d−dimensional fractional Brownian motion with Hurst coefficient H > 1/4
(Theorem D.3.2, [2]).
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Yt : [0, T ] → Rm. Then, for any smooth test function
F : Rm → R and for every M ≥ 0 there is a time-
homogeneous linear operator L : T M

(
Rd

)
→ R, which

depends only on (V1, . . . , Vd, F,M, y), such that

F (Yt) = L
(
SM
t

)
+O

(
tM+1

)
, t ∈ [0, T ]. (3)

Interpreting the linear operator L as a readout layer, such
a result strongly motivates the use of (truncated) Signature as
a valuable reservoir under rough dynamics (note that smooth
controls constitute a particular case).
The drawback of using SM

t is that it has an O(dM ) com-
putational complexity3, which becomes intractable for high-
dimensional systems and/or for large values of M aimed at
obtaining a finer representation of the solution. To cope with
this issue, instead of calculating the Signature, one can extract
a new quantity, called Randomized Signature, which is easier
to compute and inherits the expressiveness and inductive bias
of the Signature.

Definition II.5 (Randomized Signature). Given k ∈ N and
random matrices A1, . . . , Ad in Rk×k, random shifts b1, . . . , bd
in Rk×1, random starting point z in Rk, and any fixed activa-
tion function σ, the Randomized Signature of X in t ∈ [0, T ]
is the solution of the differential equation

dZt =

d∑
i=1

σ (AiZt + bi) dX
i
t , Z0 = z ∈ Rk. (4)

The Randomized Signature is constructed in [8] as a ran-
dom projection of the Truncated Signature according to an
argument based on the Johnson-Lindenstrauss Lemma [45].
We refer the reader to [8] for all the details on the theoretical
derivation. The key message is the following:

Theorem II.6 (Informal). For any number of features k big
enough, the Randomized Signature of X defined in (4) can be
linearly mapped to the solution of any differential equation
controlled by it, up to a small error vanishing at k → ∞.

This result leads to the practical recipe for extracting the
Randomized Signature, summarized in Algorithm 1.

Algorithm 1 Generate Randomized Signature
Require: X ∈ Rd sampled at 0 = t0 < · · · < tN = T ,

dimension k of the Randomized Signature, and activation
function σ.
Initialize: Z0 ∈ Rk, Ai ∈ Rk×k, bi ∈ Rk to have i.i.d.
standard normal entries.
for n = 1, · · · , N do

Ztn = Ztn−1 +
∑d

i=1 σ
(
AiZtn−1 + bi

) (
Xi

tn −Xi
tn−1

)
end for

3Indeed, consider d = 2: S2
t is a 2 × 2 matrix with el-

ements
∫ t
0

(∫ v
0 dX1

s

)
dX1

v ,
∫ t
0

(∫ v
0 dX1

s

)
dX2

v ,
∫ t
0

(∫ v
0 dX2

s

)
dX1

v and∫ t
0

(∫ v
0 dX2

s

)
dX2

v . For M = 3, the object to compute is instead a 2×2×2

tensor, containing all integrals of the type
∫ t
0

(∫ w
0

(∫ v
0 dXi1

s

)
dXi2

v

)
dXi3

w

for all i1, i2, i3 ∈ {1, 2}. Hence, the complexity — as well as the
dimensionality of the features — scales exponentially in M .

The computational complexity for calculating Z is O(k2d),
and its dimensionality is O(k). In Section V-B we show
experimentally that, in order to match the approximation
capabilities of the Truncated Signature of order M , the number
k of required Randomized Signatures is fairly small – in
particular, it is not exponential in M . This confirms that work-
ing with Randomized Signatures is often less computationally
demanding and results in lower-dimensional – yet expressive
– features.

III. RANDOMIZED SIGNATURE AS RESERVOIR: THE
PROCEDURE

Combining Theorems II.4 and II.6, one can perform linear
(ridge) regression to find the sought readout map. This is
computed using observed (sampled) control-output trajecto-
ries, and can then be used to predict the solution of (1) given
a new control sequence. The complete procedure for retrieving
the output sequence Ȳ given a new control X̄ is summarized
in Algorithm 2.

Algorithm 2 Simulate solution of (1)
Require: Time grid D = {0 = t0, · · · , tN = T};
Ntrain input-output trajectories indexed by m,
{(Xt(m), Yt(m))}t∈D, with common initial condition
y0 ∈ Rm; new control {X̄t}t∈D; order of Randomized
Signature k; regularization parameter λ.
for m = 1, ..., Ntrain do

compute the Randomized Signature {Zt(m)}t∈D via
Algorithm 1.

end for
Define Y ∈ R(N+1)∗Ntrain×m and Z ∈ R(N+1)∗Ntrain×k

such that

Y =


Yt0 (1)

⊤

...
YtN

(1)⊤

...
YtN

(Ntrain)
⊤

, Z =


Zt0 (1)

⊤

...
ZtN

(1)⊤

...
ZtN

(Ntrain)
⊤


Solve

β̂ = arg min
β∈Rk×m

∥Y − Zβ∥2 + λ∥β∥2.

Compute the Randomized Signature of X̄ , {Z̄t}t∈D, and
store it in Z̄ = [Z̄t0 , · · · , Z̄tN ]⊤.
Retrieve Ȳ = [Ȳt0 , · · · , ȲtN ] = Z̄β̂.

Note that, while the choice of the activation function σ does
not affect the theoretical results [7], [8], selecting it carefully
positively impacts expressiveness. Inspired by seminal works
on the stability of deep linear networks [19] and by the
connection to neural ordinary differential equations [6], it turns
out that a good choice for σ is a linear function with 1

d×
√
k

as
slope4. The performance is further affected by the Randomized

4The dynamics or Randomized Signature is intrinsically exponential. This
initialization guarantees that the growth does not depend on the number of
controls d nor on the number of features k.

Authorized licensed use limited to: University of Basel. Downloaded on December 04,2023 at 15:13:32 UTC from IEEE Xplore.  Restrictions apply. 



Signature order k, and by the regularization parameter λ: we
select the first via cross-validation, and typically set the latter
to the value 0.001. Further investigation into these choices will
be carried out in future work.

IV. THEORETICAL CONTRIBUTION

We now provide a novel insight into the expressive power
of Randomized Signature built as in Algorithm 1. Instead of
relying on the theory of rough paths or on approximation
estimates, as done in the backbone of Theorem II.6, we
consider tools from Malliavin Calculus [5], [31].

Theorem IV.1. Let us assume that k ≥ 2, that X is a d-
dimensional Brownian motion, and that the random matrices
Ai ∈ Rk×k and shifts bi ∈ Rk are independent and identically
distributed following a law absolutely continuous with respect
to the Lebesgue measure on the space of matrices. If the
activation function σ is real and analytic, then the Randomized
Signature Zt at time t has a density with respect to Lebesgue
measure on Rk for almost all initial values Z0 = z ∈ Rk.

Proof. Considering the vector fields Vi(z) = σ(Aiz + bi)
for i = 1, · · · , d, it holds that the Lie bracket [Vi, Vj ](z) is
independent with respect to Vi(z) and Vj(z) almost surely: in
fact, independent random samples only meet with probability
zero into zero sets of non-constant analytic functions [9].
By an inductive argument, it follows that the vector fields
z → σ(Aiz + bi) satisfy Hörmander condition, i.e. the Lie
algebra generated by {Vi(z)}di=1 spans Rk. The conclusion
follows by applying, e.g., Theorem 7.4 in [37]. ■
Theorem IV.1 shows that the process Zt will move in all di-
rections with positive probability: in other words, the obtained
coordinate curves t → Zi

t form k curves which are almost
surely linearly independent in time. As a further consequence,
if the control Xt is a Brownian motion, for any partition
D = {t0, · · · , tN} of [0, T ] of size N + 1, also the sampling(
Zi
t0 , · · · , Z

i
tN

)
are almost surely linearly independent among

each other if k ≥ N +1. Therefore, for an appropriate choice
of k ≥ N + 1, Randomized Signature allows representing the
behavior of any target dynamical system on time grids D. We
highlight that while this result is only proven when the control
X is a Brownian motion, Theorem II.6 holds for any, possibly
time-varying, rough path (control) X. In the next Section, we
show this experimentally.

V. NUMERICAL EXPERIMENTS

We test the effectiveness of the Randomized Signature as
a reservoir computer in multiple challenging scenarios. We
start by demonstrating the robustness of our approach (Section
V-A), as we show that the predictions of Algorithm 2 over
multiple random initializations are consistent up to a negligible
deviation. Then, we display that it is an effective and efficient
low-dimensional compression of the Truncated Signature (Sec-
tion V-B), and then we show the resulting advantage in terms
of data hungriness and computational time (Section V-C).
Next, Section V-D compares the performance of Randomized
Signatures against state-of-the-art techniques for simulation

and system identification methods in the presence of a control
that is so irregular that it does not even allow a formal defini-
tion of Signature. In Section V-E we deepen such a comparison
on the real-world scenario of an electrochemical battery, where
measurements are affected by noise. Next, we use the enzyme-
substrate model [22] to show the generalization property of
the Randomized Signature on out-of-distribution trajectories.
Finally, we show on a scalar Langevin equation with double-
well potential that our proposed approach can effectively
deal with irregularly sampled time grids, which is a main
criticality in most of the state-of-the-art methods for trajectory
prediction.

A. Robustness over different random initializations

In this experiment, we show that the outputs of Algorithm
2 are stable across different realizations of Ai, bi, and Z0. We
consider the Fractional Ornstein-Uhlenbeck process

dYt = Θ(µ− Yt) dt+ΣdB
(H)
t , Y0 = y0 ∈ Rm, (5)

where B
(H)
t is an m-dimensional fractional Brownian motion

of Hurst parameter H ∈ (0, 1), µ ∈ Rm, and Θ, Σ are both
m×m positive semi-definite matrices. Relating this model to
(1), we have that Xt = [t, (B

(H)
t )⊤]⊤ ∈ Rd with d = m+ 1,

and f(Yt) = [Θ(µ−Yt), Σ] ∈ Rm×(m+1). In this experiment,
we take m = 1, y0 = 1 and (µ = 2,Θ = 1,Σ = 2); we let
H = 0.2, and the partition D of [0, 1] is made of N = 101
equally spaced times. For 10 different random seeds, we draw
different instances of Ai, bi, and Z0, generate the reservoir Zt

with k = 100 and apply Algorithm 2 to map NTrain = 100 train
samples of Z into the respective solution Yt, to which we add
white noise with variance 0.01. Figure 1 shows the average
prediction (±3× standard deviation) on a test sample across
the above-mentioned 10 random seeds. Because the signal-to-
noise ratio is ≈ 50, this shows that the model is robust to
different realizations of the Randomized Signature.

0.5 0.6 0.7 0.8 0.9 1.0
Time

1

2

3

4

5

Va
lu

e

Out of Sample, k = 100
Prediction
True

Fig. 1. Experiment of Section V-A: average prediction with ±3× standard
deviation bounds.

We conclude by highlighting that k = 100 is a relatively
low value with respect to those used in the other experiments:
we selected it to make the error bars clearly visible.

Remark V.1. We observed the same behavior consistently in
all the other proposed experiments, so we omit the Monte
Carlo study in the next sections.
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B. Randomized Signature as compression of the Truncated one

Consider a 10-dimensional control Xt =
[
t, (Wt)

⊤]⊤
where Wt is a 9-dimensional Brownian motion with inde-
pendent components, and fix the order of truncation of the
Signature to M = 6. Divide the time interval [0, 1] uniformly
into 0 = t0 < · · · < tN = 1 with N = 100, and for
each element in the grid we compute both the Truncated
Signature and the Randomized Signature of order k, with k
taking values in {1, · · · , 200}. Reshaping the two objects into
matrices with dimension

(
N ×

((
d(M+1) − 1

)
/(d− 1)− 1

))
and N × k, respectively, we perform linear regression to
find β ∈ Rk×((d(M+1)−1)/(d−1)−1) mapping the Random-
ized Signature into the Truncated Signature. We observed
that, in order to obtain an approximation error of 10−4,
we needed the Randomized Signature to be of dimension
approximately k = 190. Therefore, instead of calculating((
d(M+1) − 1

)
/(d− 1)− 1

)
= 1111110 integrals per time

step, we could just perform k2d = 36100 calculations per
time step, which is 3 times cheaper.

C. Effectiveness of Randomized versus Truncated Signatures

We now deploy Truncated and Randomized Signatures to
estimate the dynamics of the Fractional Ornstein-Uhlenbeck
process given in (5). In this experiment, we fix y0 = 1,
µ = 1, Σ = Id, [Θ]i,j = i/j, the partition D of [0, 1] to
have N = 101 equally spaced time steps, and H = 0.3. The
order of truncation for the Signature is set to M = 3, and
we consider different experiments with increasing values of
m taking range in {20, · · · , 80}. To have a more complete
picture, we repeat the experiment in two cases, i.e. when
the number of training trajectories is Ntrain = 20 and
Ntrain = 50. To keep the computational cost of extracting
features equal to O(d3) in both the models given by Truncated
and Randomized Signatures, we let k = d. As a result,
the number of features for the two models are O(d3) and
O(d), respectively, strongly impacting the computational time
(middle panel of Figure 2). The right panel of Figure 2
shows also that the performance of the Truncated Signature
degenerates as the underlying optimization problem explodes
in dimension, while that of the Randomized one is stable. This
result clearly highlights the data hungriness of Signature-based
models when the number of dimensions is high.

D. Comparison with baseline methods

In this experiment, we consider again the Fractional
Ornstein-Uhlenbeck process presented in (5) with m = 1,
y0 = 1, and the same time grid D of 101 equally spaced
points on [0,1], but we take a Hurst coefficient H = 0.1
corresponding to a highly irregular control. We benchmark
a Randomized Signature of order k = 50 with the following:
(a) Neural Controlled Differential Equations (NCDEs) [24],
a model which parametrizes the vector fields of a latent
controlled differential equation of dimension nlatent = 100
with feedforward neural networks with 1 hidden layer of
nnodes = 70 nodes each, followed by a linear layer mapping
the latent variable into the output; (b) Echo State Networks

(ESN) [23], which evolve the input state according to an
update rule which is that of an untrained recurrent neural
network that is ultimately linearly mapped into the output.
We chose the internal state to be of size 50 (such that we
have the same number of trainable parameters as the model
based on Randomized Signature) and the activation functions
to be hyperbolic tangents. The spectral radius and leaking rate
have been selected in cross-validation and set to 0.7 and 0.4,
respectively; (c) Neural Network Autoregressive model with
Exogenous Input (NNARX) as presented in [42], i.e. with
na = nb = 12, nk = 1, and using a feedforward neural
network with input dimension na+nb+1 = 25 and 2 hidden
layers each with 100 hidden units; (d) a Long Short-Term
Memory (LSTM) neural network [21] with 2 hidden recursive
layers of dimension 35. In this experiment, we use Ntrain =
1000 trajectories to train the models, and Ntest = 1000
to test the results. For the NNARX and NCDE models, we
minimized the mean square error optimizing with Adam with
a learning rate of 0.01 for 100 epochs. Similarly, for the LSTM
model, we used Adam with a learning rate of 0.001 for 1000
epochs. The results, showing the superior performance of the
Randomized Signature in terms of accuracy and computational
load, are presented in Table I.

Average L2 relative error Training time [s] # parameters
RS (1.02± 1.67) · 10−5 1.59 50

NCDE (7.57± 7.95) · 10−2 3296.63 14471
ESN (4.24± 3.27) · 10−2 3.01 50

NNARX (2.96± 8.33) · 10−5 323.73 12801
LSTM (4.49± 6.95) · 10−4 535.21 15436

TABLE I
RESULTS FOR BASELINE COMPARISON PRESENTED IN SECTION V-D

E. Real-world experiment: electrochemical battery model with
noisy observations

In this experiment, we learn the dynamics of the elec-
trochemical battery model proposed in [10], which returns
the voltage Y as the current X is injected into the battery.
This system is of real-world relevance, as it relies on high-
dimensional nonlinear physic-based differential equations that
ensure the high fidelity of the simulated data. We use the open-
source NASA Prognostic Model Package [44] to simulate
voltage trajectories given input current control paths. On a
fixed equally spaced partition D of [0, 500], we model the
input current with step functions taking values 0 or 1 on
random sub-intervals of [0, 500]. We apply Algorithm 2 to
map NTrain = 1000 instances of k-dimensional Randomized
Signature of the controls into the respective solutions to
which we add white noise with variance 0.01. We consider
k = {50, 166, 1000}. We compare our results with NNARX
– which, consistently with the experiment in Section V-D,
is the best-performing benchmark on this task. Specifically,
we choose the parameters as na = nb = 12 and nk = 1,
which leads to the best results, and we use a feedforward
neural network with input dimension na + nb + 1 = 25
and 2 hidden layers each with either 22 (NNARX22) or
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Fig. 2. Experiment of Section V-C: Randomized Signature vs. Truncated Signature model. (Left) The number of trainable parameters for Randomized Signature
is significantly smaller regardless of the number of controls. (Middle) Truncated Signature is much slower than Randomized Signature in high dimensions.
(Right) As opposed to Randomized Signature, the performance of Truncated Signature degrades as the number of controls increases, and even more so when
the training set is small, thus indicating data hungriness.
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Fig. 3. Experiment of Section V-E with electrochemical battery model. (Left) Comparison between the ground truth and our prediction on a
sample trajectory. (Middle) Predictions on Test Sample for different values of k. Consistently, the fit quality improves as k increases. (Right)
Comparison with NNARX.

1000 (NNARX1000) hidden units. We minimized the mean
square error optimizing with Adam with a learning rate of
0.01 for 100 epochs. The results are presented in Figure 3.
Furthermore, Table II presents the out-of-sample comparison
in terms of Mean Squared Error with respect to the ground
truth averaged across Ntest = 1000 test trajectories. Note
that the NNARX22 has around 1000 trainable parameters just
like our model with k = 1000 and that NNARX1000, which
matches our best model in terms of MSE, has around 103 more
trainable parameters.

k = 50 k = 166 k = 1000 NNARX 22 NNARX 1000
NTest = 1000 3.15 · 10−4 2.66 · 10−4 2.59 · 10−4 3.88 · 10−4 2.62 · 10−4

TABLE II
ELECTROCHEMICAL BATTERY MODEL, EXPERIMENT IN SECTION V-E:

MSE ERROR COMPARISON

F. Out-of-sample generalization on enzyme-substrate model

We consider the controlled differential equation describing
the reaction between concentrations of a substrate St and of an
enzyme Et = 1− St, yielding the enzyme-substrate complex
Ct according to the Michaelis-Menten model. Additional
substrate is injected through a control Xt, and the observed
quantity of interest Yt is the chemical product of the reaction

– for instance, the latter can be glucose obtained from lactose-
lactase reaction. The overall kinetics can be described by the
model

dSt = (k−1Ct − k1St (1− Ct)) dt+Xtdt

dCt = − (k−1Ct − k1St (1− Ct)) dt− k2Ctdt

dYt = k2Ctdt.

Following [22], we choose (k1, k−1, k2) = (30, 1, 10), set
(S0, C0, Y0) = (0, 0, 0) and consider the evolution on t ∈
[0, 1]. We fix the time grid to have N = 101 equally spaced
time steps and the control Xt to follow the law of W 2

t

where Wt is a 1-dimensional Brownian Motion (to ensure
positivity). We apply Algorithm 2 to map 105 instances of
222-dimensional Randomized Signature Z of the controls into
the respective solution Yt. On the top of Figure 4, we plot the
comparison of the true and the generated time series on a test
sample. As we can see, the model has learned to correctly
map a trajectory of Xt to the respective system response Yt.
More surprisingly, the bottom of such a figure shows that
our model is able to predict the correct output even if we
stimulate the system with a substrate injection that follows a
completely different law with respect to those used in training,
i.e. Xt = 0.5 · 1{W 2

t >0.5}. This suggests that the system was
correctly identified even out-of-distribution.
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Fig. 4. Experiment of Section V-F. Enzyme-Substrate Reactions stimulated
with: (Top) squared Brownian motion; (Bottom) step function, which is out-
of-distribution.

G. Test on irregularly sampled grid

We consider the 1-dimensional Langevin equation with
double-well potential given by

dYt = θYt

(
µ− Y 2

t

)
dt+ σdWt, Y0 = y0 ∈ R, (6)

where t ∈ [0, 1], Wt is a 1-dimensional Brownian motion,
and (µ, θ, σ) ∈ R × R+ × R+; in this experiment, we fix
y0 = 1 and (µ = 2, θ = 1, σ = 1). For each train and test
sample, the partition D of [0, 1] is made of N randomly
drawn times. More precisely, D = {0, t1, · · · , tN−1, 1} such
that tk = 1/(1 − exp(−sk)) and {s1, · · · , sN−1} are N − 2
independent realizations of a uniform distribution U [0, 1]
sorted in increasing order. As a result, the probability that
two samples share the same D is null. We apply Algorithm
2 with NTrain = 10000 train samples, and Figure 5 shows the
comparison on an out-of-sample generated and true trajectory.
Finally, Table III shows the Relative L2 Error on 10000 test
samples as we vary the number of time steps N and k, and
we compare it to the respective experiment in case the time
grid is regularly spaced. As we can see, even though the
performance is worse than the regularly sampled setup, this
technique proves to be anyway reliable on irregularly sampled
regimes.

(N, k) = (11, 111) (N, k) = (101, 222) (N, k) = (1001, 332)
Irregular 0.082735 0.016885 0.010902
Regular 0.026759 0.004465 0.003004

TABLE III
RELATIVE L2 ERROR COMPARISON WITH REGULARLY AND

IRREGULARLY SAMPLED GRID (SECTION V-G)
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Fig. 5. Experiment of Section V-G with Langevin equation. Simulation of an
out-of-sample trajectory using an irregularly sampled time grid.

VI. CONCLUSIONS

A challenging problem emerging in a plethora of fields
consists in solving a controlled stochastic differential equation.
The main difficulties that can arise in this situation may be:
(a) the law governing the differential equation is unknown, so
one needs to rely on sampled input/output trajectories; (b) the
samples are observed on an irregular time grid; (c) the input
trajectory is highly irregular, e.g., is a rough path. To cope
with them, this work investigated the power of Randomized
Signature as a reservoir. Such an approach proved to be very
effective in estimating the solution of the stochastic differential
equation driven by a new control input, showing its low data
hungriness and robustness compared with state-of-the-art sys-
tem identification and deep learning-based methods. Further
investigations will aim at providing deeper theoretical results
on the generalization capability of Randomized Signature.
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