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We consider the problem of optimally sharing a financial position among agents with potentially
different reference risk measures. The problem is equivalent to computing the infimal convolution
of the risk metrics and finding the so-called optimal allocations. We propose a neural network-based
framework to solve the problem and we prove the convergence of the approximated inf-convolution,
as well as the approximated optimal allocations, to the corresponding theoretical values. We support
our findings with several numerical experiments.
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1. Introduction

We consider the problem faced by n economic agents, with
reference risk measures ρ1, . . . , ρn, who want to share the risk
carried by a certain financial position, represented by a ran-
dom variable X. The goal is to write X as the sum of n random
variables X1, . . . , Xn so that the sum of the risk of the single
agents, ρ1(X1)+ · · · + ρn(Xn), is minimized. The problem is
well known in the mathematical finance literature under the
name of risk sharing, and it amounts to the calculation of the
infimal convolution (inf-convolution) defined as follows:

ρ1� · · · �ρn(X ) := inf

{
n∑

i=1

ρi(Xi) :
n∑

i=1

Xi = X

}
. (1)

The seminal paper Barrieu and El Karoui (2005), which intro-
duced inf-convolutions in the context of (convex) risk mea-
sures, originated a vast offspring of literature. Acciaio (2007)
and Filipović and Svindland (2008) studied the case without
monotonicity assumptions on the (ρi)i=1,...,n, Mastrogiacomo
and Rosazza Gianin (2015) considered the case of cash-
subadditive and quasi-convex functionals, while multivariate
risks are treated in Carlier and Dana (2013) and Carlier et
al. (2012). We also mention Heath and Ku (2004), Tsanakas
(2009), Dana and Le Van (2010), Weber (2018), Liebrich and
Svindland (2019) and Embrechts et al. (2018, 2020) for fur-
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ther extensions and we refer to Rüschendorf (2013) for a
comprehensive overview of the topic.

The most relevant results for our analysis were established
by Filipović and Svindland (2008) and Jouini et al. (2008) in
the study of the so-called optimal allocations for ρ1� · · · �ρn,
namely, the minimizers of the right-hand side of (1). For
the case of law-invariant risk measures, it was demonstrated
that comonotonicity plays a key role. In fact, optimal allo-
cations can be found in the form f1(X ), . . . , fn(X ) for some
non-decreasing, real-valued, maps f1, . . . , fn, which sum up
to the identity. This key aspect inspires the numerical frame-
work that we propose in this paper. Indeed, it can be shown
that the functions fi, for i = 1, . . . , n, are Lipschitz contin-
uous functions, thus, they can be very well approximated
by neural networks. Despite the abundance of theoretical
results on the risk-sharing topic, we are not aware of a
general framework for the numerical computation of the solu-
tions which works under very little assumptions, such as
law-invariance and convexity. Indeed, the aforementioned
literature usually focused on the explicit (or semi-explicit)
computation of the optimal allocations in some special cases.
This operation obviously requires an exact computation of
the inf-convolution and their minimizers, which needs to be
worked out case-by-case. Some risk measures of interest, for
which explicit solutions can be provided, are the entropic
risk measure and expected shortfall among the family of con-
vex risk measures and, more recently, the (Range) Value at
Risk among the non-convex ones, see Embrechts et al. (2018,
2020).

© 2024 Informa UK Limited, trading as Taylor & Francis Group
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Using a suitable version of the Universal Approximation
Theorem, we prove in section 2 that

ρ1�ρ2(X ) = inf {ρ1(f (X ))+ ρ2(X − f (X )) : f ∈ NN } ,

where NN is a suitable class of feed-forward neural net-
works. Deep neural networks (DNNs) have been proven to be
very effective in solving a great variety of problems and in this
paper, we show that this is the case also in a risk sharing con-
text. The precise results are stated in theorems 2.8 and 2.11,
which constitute the main results of the section. Note that the
restriction to n = 2 agents is dictated by the convenience of
exposition, but the case n ≥ 2 can be covered similarly. Of
course, we do not exclude that other methods could be suc-
cessfully applied. In appendix 2, we discuss some possible
alternative approaches.

In view of establishing a rigorous framework for our
numerical experiments, we devote section 3 to the con-
vergence analysis of the historical estimators of the inf-
convolution, as well as of their corresponding optimal alloca-
tions. Such estimators are constructed simply by applying the
risk measures of the agents to the empirical distribution of a
large sample of X (see e.g. Cont et al. (2010) for an overview).
The main convergence result of the section is theorem 3.3
which provides the theoretical justification of the experiments
of section 4. We test our findings in a series of numerical
experiments with different risk measures, different architec-
tures, and different distributions for X (see section 4.1 for the
details about the framework) obtaining consistent results. As
for the risk measures, we use the following:

(i) Entropic risk measure with parameter β > 0:

Entrβ(X ) := β log E
[
e−X/β

]
; (2)

(ii) Expected Shortfall (ES) at level α ∈ (0, 1):

ESα(X ) = 1

α

∫ α

0
V@Ru(X ) du,

V@Ru(X ) := inf{m ∈ R : P(X + m < 0) ≤ u};

(iii) Distortion risk measure for μ ∈ Prob([0, 1]), see
(Föllmer and Schied 2016, section 4.6):

ρμ(X ) :=
∫ 1

0
ESα(X )μ(dα). (3)

The situation where all agents adopt an entropic risk measure,
respectively ES, admits an explicit and simple solution for
both the value of the inf-convolution and the optimal allo-
cations. We test our numerical approximation in these cases
only to confirm that the trained DNNs are converging to the
known solutions. We then proceed in testing our algorithms
in more complex situations. We cover the case of risk shar-
ing between agents with distortion-type risk measures and
between heterogeneous agents, that is, two agents using risk
measures of different types—one has the entropic and the
other adopts either the expected shortfall or a distortion risk
measure. In all such cases, we confirm that the trained network
is able to recover the expected form of the optimal allocations,

known from Embrechts et al. (2018) and Jouini et al. (2008).
In the last experiment, where we consider the convolution of
an entropic risk measure with a distortion risk measure, we do
not have any information about the solution.

We also mention here that a neural-network based approach
was successfully adopted in approximating optima for short-
fall systemic risk measures with random allocations in Feng
et al. (2022) and Doldi et al. (2023). Such a type of systemic
risk measures was shown to be connected to sup-convolution
problems in Doldi et al. (2024). We conclude this introduction
with the frequently used notation. For a metric space X, B(X)
denotes the Borel σ -algebra and mB(X) denotes the class of
real-valued, Borel-measurable functions on X. We define the
following sets:

ca(X) := {γ : B(X) → (−∞, +∞)

: γ is finite signed Borel measure on X} ;

Meas(X) := {μ : B(X) → [0, +∞) : μ

is a non negative finite Borel measure on X};
Prob(X) := {Q : B(X) → [0, 1]

: Q is a probability Borel measure on X};
C(X) := {ϕ : X → R : ϕ is continuous on X};
Cb(X) := {ϕ : X → R; : ϕ is bounded and

continuous on X};
Probp(R) := {Q ∈ Prob(R) :∫

R

|x|p dQ(x) < +∞}, p ∈ [1, +∞);

Prob∞
K (R) := {Q ∈ Prob(R) : Q([−K, K]) = 1}, K > 0;

Prob∞(R) :=
⋃
K>0

Prob∞
K (R).

2. The theoretical framework

Let (�,F , P) be a standard non-atomic probability space
(see e.g. Svindland (2010) for details about the possibil-
ity of dropping the standardness assumption). The Banach
space Lp(�,F , P) for p ∈ [1, ∞) is the set of p-integrable
random variables on (�,F , P), endowed with the norm ‖ ·
‖p := (E[| · |p])1/p. The Banach space L∞ is the set of essen-
tially bounded random variables, endowed with the supremum
norm ‖ · ‖∞. The order relation ≤ on such spaces is the one
induced by the P-a.s. ordering. We first recall the definition
of monetary risk measures and some of their standard prop-
erties. We refer to the book Föllmer and Schied (2016) for a
thorough presentation of the topic.

Definition 1 Let p ∈ [1, ∞] and ρ : Lp(�,F , P) →
(−∞, ∞] a functional.

• ρ is normalized if ρ(0) = 0;
• ρ is finite if ρ(X ) < ∞ for every X ∈ Lp(�,F , P);
• ρ is monotone if ρ(X ) ≤ ρ(Y ), whenever X ≥ Y P-

a.s.;
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• ρ is cash additive if ρ(X + c) = ρ(X )− c, for
every X ∈ Lp(�,F , P) and c ∈ R;

• ρ is convex if ρ(λX + (1 − λ)Y) ≤ λρ(X )+ (1 −
λ)ρ(Y), for every X , Y ∈ Lp(�,F , P) and λ ∈
[0, 1].

Any normalized, finite, monotone, and cash-additive ρ is
called a monetary risk measure. If ρ is also convex, it is called
a convex risk measure.

• ρ is law-invariant if ρ(X ) = ρ(Y ) whenever X ∼
Y;

• ρ satisfies the Lebesgue Property if ρ(X ) =
limn→+∞ ρ(Xn) for any sequence (Xn)n∈N ⊆ Lp

(�,F , P) and X ∈ Lp(�,F , P) such that: there
exists Z ∈ Lp(�,F , P) with |Xn| ≤ Z P-a.s. for all
n ∈ N and limn→+∞ Xn = X P-a.s. holds.

We next introduce the concept of infimal convolution (inf-
convolution in short) of convex risk measures ρ1 . . . , ρn. For
ease of exposition, we restrict ourselves to the case of n = 2,
however, all the results generalize to the case of an arbitrary
n ∈ N.

Definition 2 Let p ∈ [1, ∞]. Given two functionals ρ1,
ρ2 : Lp(�,F , P) → (−∞, ∞], their infimal convolution is
defined as:

ρ1�ρ2(X ) := inf {ρ1(X1)+ ρ2(X2)

: X1, X2 ∈ Lp, X1 + X2 = X } , X ∈ Lp. (4)

Every couple (X1, X2) ⊆ Lp such that X1 + X2 = X is called
an allocation for X. Additionally, we say that an allocation
is

• An optimal allocation if it is a minimizer of the
right-hand side of (4);

• A comonotonic allocation if it is of the form
(f1(X ), f2(X )) for some increasing† functions f1, f2 :
R → R such that f1 + f2 = Id, where Id : R → R

denotes the identity function Id(x) = x.

The following well-known result, see Filipović and Svin-
dland (2008, theorem 2.5), shows that for lower semi-
continuous (l.s.c.) law-invariant convex risk measures, opti-
mal allocations can be found among the class of comonotonic
allocations.

Theorem 2.1 Let p ∈ [1, ∞] and ρ1, ρ2 : Lp → (−∞, ∞] be
l.s.c. law-invariant convex cash additive functions. Then
ρ1�ρ2 : Lp(�,F , P) → [−∞, ∞] is a l.s.c. law-invariant
convex cash additive function. Moreover, there exist increas-
ing functions f1, f2 : R → R such that f1 + f2 = Id and

ρ1�ρ2(X ) = ρ1(f1(X ))+ ρ2(f2(X )).

It is not difficult to see that the functions f1, f2 are nec-
essarily Lipschitz continuous. Indeed, for x ≥ y, we can
write f1(x)− f1(y)+ f2(x)− f2(y) = x − y and, using that
both functions are increasing, we obtain the inequality |fi(x)−
fi(y)| ≤ |x − y| for i = 1, 2. For the case x ≤ y, the argument

† Increasing is understood in the non-strict sense.

is analogous. In particular, it holds ‖fi‖Lip ≤ 1 for i = 1, 2,
where

‖f ‖Lip := inf{L > 0 : |f (x)− f (y)| ≤ L|x − y|, ∀ x, y ∈ R}.

We also observe that, for monetary risk measures, if
(f1(X ), f2(X )) is an optimal allocation, the same is true for
(f1(X )− c, f2(X )+ c) for an arbitrary c ∈ R. This is also
called rebalancing of cash. Without loss of generality, the
function f1 can be therefore chosen to satisfy f1(0) = 0, while
still preserving the Lipschitz property. Combining these two
observations we obtain the following corollary to theorem 2.1.

Corollary 2.2 Under the assumptions of theorem 2.1, we
have

ρ1�ρ2(X ) = min
{
ρ1(f (X ))+ ρ2(X − f (X )) : f ∈ A0

Lip

}
,

(5)

where

A0
Lip := { f : R → R : f (0) = 0,

‖f ‖Lip ≤ 1, ‖Id − f ‖Lip ≤ 1
}

(6)

is the set of normalized Lipschitz allocations.

Any function f ∈ A0
Lip induces the allocation (f (X ), X −

f (X )). Indeed the sum equals X by construction and, using
the Lipschitz property, it is clear that if X ∈ Lp(�,F , P) then
f (X ) ∈ Lp(�,F , P) as well. With a slight abuse of terminol-
ogy, we call allocation also the pair of functions (f , Id − f ).
By denoting PX the law of X under P, this terminology
becomes accurate when we work on the probability space
(R,B(R), PX ), as it will often be the case below. The follow-
ing is a sufficient criterion for guaranteeing the uniqueness
of optimal allocations, see Filipović and Svindland (2008,
theorem 2.5). For X , Y ∈ Lp we use the notation X − Y /∈ R

for indicating that the difference X − Y is not a constant
random variable.

Proposition 2.3 Under the assumptions of theorem 2.1, sup-
pose additionally that ρ1 is strictly convex in the sense
that

ρ1(λY + (1 − λ)Z) < λρ1(Y )

+ (1 − λ)ρ1(Z) ∀ λ ∈ (0, 1), Y , Z ∈ Lp s.t. Y − Z /∈ R.
(7)

Then the optimal allocation for ρ1�ρ2 is unique up to rebal-
ancing of cash, namely, for any pair of optima (X1, X2),
(X̂1, X̂2) ∈ Lp(�,F , P)× Lp(�,F , P) it holds X̂i = Xi + ci

for some ci ∈ R with c1 = −c2 and for i = 1, 2.

This proposition generalizes to the case n ≥ 2 when all but
one of the initial risk measures are strictly convex (see e.g. the
discussion after corollary 11.14 in Rüschendorf (2013)).

An example of strictly convex risk measure is the entropic
risk measure of (2). We observe here that, for a given X ∈ Lp,
uniqueness can be obtained via a small perturbation of ρ1 by
guaranteeing, at the same time, that the value of the infimal
convolution is close.
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Lemma 2.4 Let ρ1, ρ2 be law-invariant convex risk measures
on Lp(�,F , P), for p ∈ [1, +∞]. Let ρ̃ be a strictly convex
risk measure on Lp(�,F , P). For every ε̃ > 0, the risk mea-
sure ρ1,ε̃ := (1 − ε̃)ρ1 + ε̃ρ̃ is a strictly convex risk measure.
Moreover, for every X ∈ Lp(�,F , P) and ε > 0, there exists
1 > ε̃ = ε̃(X ) > 0 such that |ρ1�ρ2(X )− ρ1,ε̃�ρ2(X )| < ε.

Proof It is easy to see that all the properties of ρ1 and
ρ̃ are inherited by ρ1,ε̃. As for the second statement, in
view of corollary 2.2 it is enough to show that, defin-
ing �ε̃(f ) := ρ1,ε̃(f (X ))+ ρ2(X − f (X )), f ∈ A0

Lip, we have
limε̃↓0 supf ∈A0

Lip
|�ε̃(f )−�0(f )| = 0. To see this, observe

that ∣∣�ε̃(f ) −�0(f )
∣∣ = ε̃ |ρ1(f (X ))− ρ̃(f (X ))|
≤ ε̃ (|ρ1(f (X ))| + |ρ̃(f (X ))|)

Since f ∈ A0
Lip, |x| ≥ |f (x)| ≥ − |x| and by monotonicity

and finiteness of ρ1 we get ρ1(− |X |) ≥ ρ1(f (X )) ≥ ρ1(|X |),
and |ρ1(f (X ))| ≤ |ρ1(− |X |)| + |ρ1(|X |)|. The same argu-
ment applies to ρ̃, from which we deduce |�ε̃(f )−�0(f )| ≤
ε̃K for some constant K>0 depending only on X. Since the
right-hand side does not depend on f, the claim is proved. �

Towards the aim of approximating the infimal convolu-
tions using neural networks, we need some continuity of the
risk functionals. For risk measures on L∞, the continuity is
a consequence of the monotonicity and cash additivity prop-
erties. For the case p ∈ [1, ∞), the Extended Namioka-Klee
Theorem (see Biagini and Frittelli (2010)) guarantees that any
proper convex and monotone functional on Lp is continuous
with respect to the Lp-norm, on the interior of its domain.
Thanks to the finiteness property, convex risk measures as in
definition 2.1 are norm continuous for every p ∈ [1, ∞] on the
whole space. Throughout the paper, we will therefore make
the following standing assumption.

Assumption 2.5 ρ1 and ρ2 are law-invariant convex risk
measures.

2.1. Approximation of inf-convolutions via neural
networks

In this section, we show that the inf-convolution of two
risk measures in (5) can be approximated using neural net-
works in the construction of the allocations. This is achieved
by means of appropriate versions of the universal approx-
imation theorem (UAT). We first note that we can reduce
our focus to (R,B(R)). Consider indeed a functional ρ :
Lp(�,F , P) → (−∞, +∞] which is law-invariant. Since the
underlying space is non-atomic, for every probability measure
Q ∈ Probp(R) (or Q ∈ Prob∞(R) for p = ∞), there exists
X ∈ Lp(�,F , P) such that Q = PX . Using the law invariance
of ρ, the functional ρ̃ (·|Q) : Lp(R,B(R), Q) → (∞, +∞]
given by

ρ̃ (ϕ|Q) := ρ(ϕ ◦ X ) for any measurable

X : � → R such that PX = Q (8)

is well defined and it inherits the properties listed in
definition 2.1 from ρ. A similar procedure has been consid-
ered by Frittelli and Maggis (2018), although with a totally
different aim. We stress some key consequences.

Proposition 2.6 Let p ∈ [1, +∞]. Let ρ1, ρ2 : Lp → R be
law-invariant convex risk measures. Then,

ρ1�ρ2(X ) = inf
{
ρ1(f (X ))+ ρ2(X − f (X )) : f ∈ A0

Lip

}
(9)

= inf {ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX )

: f ∈ A0
Lip

}
= ρ̃1 ( · |PX )�ρ̃2 ( · |PX ) (Id)

(10)

and f̂ ∈ A0
Lip is a minimum in (9) if and only if it is a minimum

in (10).

Proof The equality (9) is simply corollary 2.2. The first
equality in (10) is given by definition of ρ̃ in (8) and the
fact that any f ∈ A0

Lip satisfies f ∈ Lp(R,B(R), PX ), thanks
to the Lipschitz continuity. The last equality in (10) does not
immediately follow from corollary 2.2, since we do not know
if (R,B(R), PX ) is non-atomic. The inequality ≥ is clear.
Using (8), we can rewrite

ρ̃1 ( · |PX )�ρ̃2 ( · |PX ) (Id)

= inf {ρ̃1 (Y |PX )+ ρ̃2 (Id − Y |PX ) : Y ∈ Lp(R,B(R), PX )}
= inf {ρ1(Y ◦ X )+ ρ2(X − Y ◦ X ) : Y ∈ Lp(R,B(R), PX )}
≥ ρ1�ρ2(X )

which concludes the proof of the equality chain in (9), (10).
The last statement follows from (8). �

Remark 1 The second equality in (10) holds, more gener-
ally, if we replace PX with an arbitrary Q ∈ Probp(R). Indeed,
since the space is non atomic, Q is the law of some Y ∈
Lp(�,F , P). For such a Y it also holds that ρ1�ρ2(Y ) =
ρ̃1 ( · |Q)�ρ̃2 ( · |Q) (Id).

We next introduce the class of neural networks that we
intend to use.

Definition 3 Let L, N0, . . . , NL ∈ N with L ≥ 2, let σ : R →
R an activation function and for any � = 1, . . . , L, let W� :
RN�−1 → RN� an affine function. A (feed-forward) neural
network is a function F : RN0 → RNL defined as

F(x) := (WL ◦ σ ◦ WL−1 ◦ · · · σ ◦ W1) (x),

where the activation function σ is applied componentwise.

We denote by NN the vector space generated by the class
of neural networks from RK → R determined by a fixed
activation function σ , continuous, nonconstant and bounded.
Notice that NN is a vector subspace of Cb(R

K), and is, in
particular, a convex cone. Moreover, imposing L = 2 in the
above definition, NN contains the functions generated by
only one hidden layer and only one output unit as considered
in Hornik (1991). A simple argument based on the classical
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UAT of (Hornik 1991, theorem 1) yields the approximation
result that we need, at least for the case p < +∞. The case
p = ∞ is not covered by this theorem and we need a slightly
different approach.

Theorem 2.7 Let σ be continuous, bounded, and noncon-
stant. Then NN is norm dense in Lp(RK ,B(RK),μ) for any
finite measure μ ∈ Meas(RK) and p ∈ [1, +∞).

The original theorem is stated for networks with two layers
(L = 2). Since NN contains this particular class, the density
result also holds as stated in theorem 2.7. The following is our
first approximation result.

Theorem 2.8 Let p ∈ [1, ∞). Let ρ1, ρ2 : Lp(�,F , P) → R

be law-invariant convex risk measures. Then,

ρ1�ρ2(X ) = inf {ρ1(f (X ))+ ρ2(X − f (X )) : f ∈ NN } .
(11)

Proof Let X ∈ Lp(�,F , P). Let PX be the law of X under P.
We claim that

ρ1�ρ2(X ) = inf {ρ1(f (X ))+ ρ2(X − f (X ))

: f : R → R s.t. f (X ) ∈ Lp(�,F , P)}
= inf {ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX )

: f ∈ Lp(R,B(R), PX )} .

Indeed, from corollary 2.2, ρ1�ρ2(X ) attains the mini-
mum over the set of allocations (f (X ), X − f (X )) with f ∈
A0

Lip. Since f (X ) ∈ Lp(�,F , P), for every f ∈ A0
Lip, the first

equality follows. The second equality is by (8). Notice
now that ρ̃1 (·|PX ) and ρ̃2 (·|PX ) are law-invariant convex
risk measures, which are ‖ · ‖p-continuous by the Extended
Namioka-Klee Theorem in Biagini and Frittelli (2010). From
theorem 2.7, applied with μ = PX , we have

ρ1�ρ2(X )

= inf
{
ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX ) : f ∈ NN ‖·‖p

}
,

which in turns yields, by norm continuity, that (11) holds. �

The UAT does not provide uniform approximations and,
in particular, it does not cover the L∞ case. We use
here an approach based on weighted spaces in order to
obtain theorem 2.10, which is inspired by the forthcoming
paper Cuchiero et al. (2022). This theorem is only instru-
mental for our main results and it is certainly not the first
time that the theory of weighted spaces has been exploited
in Universal Approximation results (see for example Krat-
sios (2021), Cuchiero et al. (2022) and the references therein).
We will also add a short proof for the sake of completeness.
Let r : X → [1, +∞) be a continuous function with compact
sublevels and define

Cr(X) :=
{
φ ∈ C(X) : ‖φ‖r := sup

x∈X

|φ(x)|
r(x)

< +∞
}

.

The space Cr(X) is a Banach lattice when endowed with the
norm ‖·‖r. This can be easily verified following verbatim the

argument for the standard case of bounded continuous func-
tions with the supremum norm. We introduce the following
sets:

car(X) := {γ : B(X) → R

: μ ∈ ca(X) and
∫
�

r(x) d |γ | (x) < +∞
}

;

Measr(X) := {μ : B(X) → [0, +∞) :

: μ ∈ Meas(X) and
∫
�

r(x) dμ(x) < +∞
}

;

Probr(X) := {Q : B(X) → [0, 1]

: Q ∈ Prob(X) and
∫
�

r(x) dP(x) < +∞
}

;

Br(X) := Cb(X)
‖·‖r .

Proposition 2.9 Br(X) is a Banach space and for every con-
tinuous linear functional � ∈ (Br(X))

∗ there exists a unique
γ ∈ car(X) such that �(φ) = ∫

X
φ dγ . Conversely, every γ ∈

car(X) defines a continuous linear functional in (Br(X))
∗ in

the same way.

Proof This follows from Dörsek and Teichmann (2022), see
theorems 2.4 and 2.7. �

Theorem 2.10 Let σ : R → R be continuous, bounded, and
non-constant. Let K ≥ 1 be a fixed integer and take X = RK.
Then the family NN in definition 2.3 is ‖·‖r-dense in Br(R

K).

Proof As commented above, it is enough to prove the result
for networks with two layers. By (Hornik 1991, theorem 5), σ
is discriminatory, meaning that for any γ ∈ car(R

K) = B∗
r we

have

∫
RK

σ

⎛⎝ K∑
j=1

ajxj + θ

⎞⎠ dγ = 0,

∀ a1, . . . , aK , θ ∈ R ⇒ γ ≡ 0.

Let NN be the weak closure of NN in Br with respect
to the topology σ(Br, B∗

r ) = σ(Br, car(R
K)), where the pair-

ing is given by the integration and is well defined from
proposition 2.9. Recall that, for a cone C ⊆ Br, C◦ := {γ ∈
car(R

K) :
∫

RK φ dγ = 0 ∀φ ∈ C} is called the polar cone of
C. Since σ is discriminatory, NN ◦ ⊆ NN ◦ = {0}. By the
bipolar theorem, we have NN = {0}◦ = Br(R

K). Since NN
in definition 2.3 is convex, we have NN = NN ‖·‖r , the lat-
ter being the ‖·‖r-closure of NN . This proves that NN ‖·‖r =
Br(R

K), as desired. �

The following is our second general approximation result.

Theorem 2.11 Let ρ1, ρ2 : L∞(�,F , P) → R be law-
invariant convex risk measures. Then,

ρ1�ρ2(X ) = inf {ρ1(f (X ))+ ρ2(X − f (X ))

: f ∈ NN } , X ∈ L∞(�,F , P). (12)
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Proof Let X ∈ L∞(�,F , P) and PX its law under P. From
proposition 2.6, we can rewrite

ρ1�ρ2(X ) = inf
{
ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX ) : f ∈ A0

Lip

}
.

Note that A0
Lip ⊆ Br(R) for r(x) := 1 + |x|1+ε with ε > 0. We

thus deduce,

ρ1�ρ2(X ) = inf
{
ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX ) : f ∈ A0

Lip

}
≥ inf {ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX ) : f ∈ Br(R)}
≥ inf {ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX )

: f ∈ L∞(R,B(R), PX )
}

= ρ1�ρ2(X ),

where in the second inequality we have used that PX has
compact support and r is continuous, whereas, in the third
inequality we used again the law invariance. Finally, the last
equality is a consequence of proposition 2.6. This shows
that all the above inequalities are actually equalities. From

theorem 2.10, Br(R) = NN ‖·‖r , so that

ρ1�ρ2(X ) = inf {ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX )

: f ∈ NN ‖·‖r
}

.

We conclude using the continuity of ρ1, ρ2 with respect to the
uniform convergence. �

Remark 2 Note that if we replace L∞(�,F , P) with
Lp(�,F , P) and p ∈ [1, +∞), the same arguments with the
choice of r(x) := 1 + |x|p+ε yields that (12) holds for every
X ∈ Lp+ε(�,F , P). The proof presented for theorem 2.8 is
however more direct and it does not require extra integrability
on X. The advantage of the approach of theorem 2.11 is that
the extra equality

ρ1�ρ2(X ) = inf {ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX )

: f ∈ NN ‖·‖r
}

shows that the elements in the closure are approximated by
the neural networks uniformly also for the case of p < ∞.

3. Convergence results

Let X ∈ Lp(�,F , P), for some p ∈ [1, +∞]. Consider an i.i.d.
sequence (Xn)n ⊆ Lp(�,F , P) with common distribution PX

and let (F̂N )N denote the corresponding sequence of empirical
cumulative distribution functions: for x ∈ R, F̂N (x) : � → R

is defined as

F̂N (x) := 1

N

N∑
n=1

1(−∞,x](Xn), x ∈ R.

Denote by P̂N the random measure associated to the empirical
c.d.f. F̂N , namely

ω �→ P̂N (ω)(·) := 1

N

N∑
n=1

δXn(ω)(·). (13)

Finally, for p ∈ [1, +∞), let Wp be the p-Wasserstein distance
on Probp(R) induced by the Euclidean norm, namely,

(inf {E|X − Y |p : X ∼ μ, Y ∼ ν}) 1
p

We refer to the book Villani (2009) for a thorough presenta-
tion of the topic.

Lemma 3.1 Let p ∈ [1, +∞] and X ∈ Lp(�,F , P). Then
P̂N ⇒N PX , P-a.s., where ⇒ denotes the weak convergence
of probability measures. If p ∈ [1, +∞), it holds additionally

lim
N→+∞

Wp(P, P̂N ) = 0 P-a.s..

Proof The first statement follows from the Glivenko-
Cantelli theorem. As for the second statement, theorem 6.9
in Villani (2009) shows that convergence in Wp is equiva-
lent to P̂N ⇒N PX together with the convergence of the pth
moments. The latter follows from the law of large numbers
and the integrability of PX , so that, limN→+∞

∫
R

|x|pdP̂N (x) =∫
R

|x|pdPX (x). �

We aim at proving the convergence of the optimal values,
namely,

ρ1�ρ2(X )

= lim
N→+∞

ρ̃1
(·|̂PN (ω)

)
�ρ̃2

(·|̂PN (ω)
)
(Id), P-a.e. ω, (14)

and the convergence of the corresponding minimizers. We
will need to establish some joint continuity results for the
map (f , Q) �→ ρ̃ (f |Q), defined in (8), on the spaces A0

Lip ×
Probp(R) and A0

Lip × Prob∞
K (R). Some preliminary topologi-

cal considerations are useful.

Remark 3 The space Prob∞
K (R) is used for the L∞(�,F , P)

case. Indeed, for X ∈ L∞(�,F , P) and (Xn)n an i.i.d. sequence
with common law PX , we obviously have |Xn| ≤ ‖X‖∞ P-
a.s.. Thus, the measure P̂N := 1

N

∑N
n=1 δXn satisfies P̂N (ω) ∈

Prob∞
K (R) for P-a.e. ω and for K ≥ ‖X‖∞.

We endow Probp(R) with the Wp-topology, for p ∈ [1, ∞)

and Prob∞
K with the weak topology. We endow A0

Lip with the
topology induced by the metric:

d(ϕ,ψ) :=
∞∑

h=1

1

2h

min

(
1, sup

x∈[−h,h]
|ϕ(x)− ψ(x)|

)
, ϕ,ψ ∈ A0

Lip.

(15)

One can verify that (C(R), d) is a complete metric space and
d metrizes the uniform convergence on compact sets. As a
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consequence of the Ascoli-Arzelà theorem, we have that A0
Lip

is compact with respect to the topology induced by d, as we
prove next.

Lemma 3.2 Let (ϕn)n be a sequence in A0
Lip. There exists ϕ ∈

A0
Lip and a subsequence (ϕnk )k such that limn→+∞ d(ϕnk ,ϕ) =

0.

Proof Recall that for every f ∈ A0
Lip, ‖f ‖Lip ≤ 1. In par-

ticular, for every h ∈ N, any family of functions in A0
Lip,

restricted to [−h, h], is equicontinuous and equibounded. We
first construct a sequence of functions (ϕh)h∈N in the following
iterative way. For h = 1 we apply the Ascoli-Arzelà theorem
to (ϕn)n restricted to [−1, 1]. This yields a subsequence, that
we relabel again as (ϕn)n, and a continuous function ϕ1 on
[−1, 1] such that (ϕn)n converges uniformly to ϕ1 on [−1, 1].
Note that ϕ1 is continuous on [−1, 1], being uniform limit of
continuous functions, and satisfies ϕ1(0) = 0, since ‖ϕn‖Lip ≤
1 and ϕn(0) = 0 for any n ∈ N. At the step h + 1 we repeat
the same argument to the sequence (ϕn)n obtained at step h.
Note that the limiting function ϕh+1 satisfies ϕh+1 = ϕh on
[−h, h], since (ϕn)n converges uniformly to ϕh on [−h, h].
Similarly as above, ϕh+1 is continuous on [−(h + 1), h + 1]
and satisfies ϕh+1(0) = 0.

We are now able to construct the limiting ϕ ∈ A0
Lip. For

every h ∈ N, we extend ϕh to R in an arbitrary way outside
[−h, h]. We set ϕ(x) := limh→∞ ϕh(x), for every x ∈ R and
note that ϕ coincides with ϕh on every [−h, h]. In particular,
we deduce that ϕ ∈ A0

Lip.
Finally, we construct the convergent subsequence (ϕnk )k

of the original sequence. From the Ascoli-Arzelà argument
above, for every, k ∈ N, there exists nk ∈ N such that

sup
x∈[−k,k]

∣∣ϕnk (x)− ϕk(x)
∣∣ < 1

k
.

For every h ∈ N and k ≥ h, using that ϕ = ϕk on [−k, k], we
obtain

sup
x∈[−h,h]

∣∣ϕnk (x)− ϕ(x)
∣∣ ≤ sup

x∈[−k,k]

∣∣ϕnk (x)− ϕ(x)
∣∣

= sup
x∈[−k,k]

∣∣ϕnk (x)− ϕk(x)
∣∣ < 1

k
,

which implies the uniform convergence of the subsequence
(ϕnk )k to ϕ on every interval [−h, h]. An application of
Dominated Convergence Theorem then yields

lim
k→+∞

d(ϕnk ,ϕ) = lim
k→+∞

∞∑
h=1

1

2h

min

(
1, sup

x∈[−h,h]

∣∣ϕnk (x)− ϕ(x)
∣∣) = 0.

�

We state now our main convergence result. We need the
following functional, which is an almost sure version of the

distance d. For μ a measure on B(R) and ϕ,ψ : R → R,
B(R)-measurable functions,

dμ(ϕ,ψ) :=
∞∑

h=1

1

2h

∥∥min
(
1, |ϕ − ψ | 1[−h,h]

)∥∥
∞,μ , (16)

where in the above L∞(R,B(R),μ)-norm we made explicit
the dependence on the reference measure μ in order to avoid
ambiguity in what follows.

Theorem 3.3 Let p ∈ [1, ∞]. Let ρ1, ρ2 : Lp(�,F , P) → R

be law-invariant convex risk measures. Suppose that ρ1 is
strictly convex in the sense of (7). Only in the case of p = ∞
suppose that ρ1 and ρ2 satisfy the Lebesgue property. Then,

ρ̃1 (·|PX )�ρ̃2 (·|PX ) (Id)

= lim
N→+∞

ρ̃1
(·|̂PN (ω)

)
�ρ̃2

(·|̂PN (ω)
)
(Id) P-a.e. ω.

Furthermore, let (ϕ̂, Id − ϕ̂) and (ϕ̂N (ω), Id − ϕ̂N (ω)) be
optimal allocations in A0

Lip, corresponding to PX and P̂N (ω)

respectively. Then,

lim
N→+∞

dPX (ϕ̂N (ω), ϕ̂) = 0 P-a.e. ω.

The rest of the section is devoted to the proof of this
theorem. We will need a number of auxiliary results, which
are of independent interest. The first result is essentially (Del-
baen 2021, proposition 1) or (Shapiro 2013, theorem 2.1),
adapted to our context.

Lemma 3.4 Consider again a generic atomless probability
space (�,F , P).

(i) Let p ∈ [1, +∞). Suppose (Qn)n, Q ⊆ Probp(R) and
limn→+∞ Wp(Qn, Q) = 0. Then, there exists a sequence
(Yn)n in Lp(�,F , P) and Y ∈ Lp(�,F , P) such that
PYn = Qn for every n ∈ N, PY = Q and limn→+∞
‖Yn − Y‖p = 0.

(ii) Let p = ∞. Suppose (Qn)n, Q ⊆ Prob∞
K (R) and Qn ⇒n

Q. Then there exists a sequence (Yn)n in L∞(�,F , P)
and Y ∈ L∞(�,F , P) such that PYn = Qn for every n ∈
N, PY = Q, limn→+∞ Yn = Y P-a.s. and supn ‖Yn‖∞ <

+∞.

Proof For every Qn ⇒n Q, by the Skorokhod Theorem (as
in (Billingsley 1999, theorem 25.6)), there exist random vari-
ables Y , (Yn)n such that PY = Q, PYn = Qn for every n ∈
N and limn→+∞ Yn = Y P-a.s. For item (ii), it is enough to
additionally note that P(Yn ∈ [−K, K]) = Qn([−K, K]) = 1.

As for item (i), by the characterization of Wp-convergence
in (Villani 2009, theorem 6.9), we have

lim
n→+∞ EP [|Yn|p] = lim

n→+∞

∫
R

|x|p dQn(x)

=
∫

R

|x|p dQ(x) = EP [|Y |p] .

Now we proceed as in Delbaen (2021, proposition 1): by
Scheffé’s lemma we conclude that (|Yn|p)n converges in
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L1(�,F , P) to |Y |p. Hence |Yn − Y |p ≤ 1
2 |2Yn|p + 1

2 |2Y |p =
2p−1(|Yn|p + |Y |p) is a uniformly integrable sequence. Indeed,

EP

[
1{|Yn−Y |p≥K} |Yn − Y |p] ≤ EP

[
1{|Yn|p+|Y |p≥21−pK} |qn − q|p]

≤ EP

[
1{|Yn|p+|Y |p≥21−pK} (|Yn|p + |Y |p)] .

Since |Yn − Y |p converges to zero P-a.s., the proof is com-
plete. �

Proposition 3.5 Let p ∈ [1, ∞] and ρ : Lp(�,F , P) → R

be a law-invariant convex risk measure. For p ∈ [1, +∞)

the map (f , Q) �→ ρ̃ (f |Q) of (8) is continuous on A0
Lip ×

Probp(R). If, on the other hand p = +∞ and ρ addition-
ally satisfies the Lebesgue property on L∞(�,F , P), then
(f , Q) �→ ρ̃ (f |Q) is continuous on A0

Lip × Prob∞
K (R), for

every K>0.

Proof We start covering the case p ∈ [1, +∞). Since
A0

Lip × Probp(R) is a metric space, we check continuity
along sequences. Take a convergent sequence (fn, Qn) →n

(f , Q) in A0
Lip × Probp(R). Take any subsequence. We

prove that it admits a further subsequence for which
limk→+∞ ρ̃

(
fnk |Qnk

) = ρ̃ (f |Q), which yields the conver-
gence of the original sequence. The first extracted sub-
sequence will be relabelled with the index n ∈ N. Since
limn→+∞ Wp(Qn, Q) = 0, we can apply lemma 3.4. Since

lim
N→+∞

‖Yn − Y‖p = 0

up to taking a further subsequence (and relabeling again with
n) we might suppose that there exists a 0 ≤ Z ∈ Lp with |Yn| ≤
Z ∀ n ∈ N, P-a.s. By Dominated Convergence Theorem, since
limn→+∞ fn(Yn) = f (Y )P-a.s., we get

lim
n→+∞ ‖fn(Yn)− f (Y )‖p = 0.

Now, since ρ is real-valued, hence norm continuous by
Extended Namioka-Klee Theorem, we deduce

ρ̃ (f |Q) := ρ(f (Y )) = lim
n→+∞ ρ(fn(Yn)) =: lim

n→+∞ ρ̃ (fn|Qn)

(17)

and the desired continuity follows.
For the second statement, the argument is very similar.

Take a convergent sequence (fn, Qn) →n (f , Q) in A0
Lip ×

Prob∞
K (R). Take any subsequence. We prove that it admits

a further subsequence for which limk→+∞ ρ̃
(
fnk |Qnk

) =
ρ̃ (f |Q). Use lemma 3.4 item (ii) to obtain the sequence
(Yn)n. Since fn ∈ A0

Lip ∀ n ∈ N, we have supn ‖fn(Yn)‖∞ ≤
supn ‖Yn‖∞ which is finite by lemma 3.4 item (ii). Since fn
converges to f uniformly on compact intervals by definition,
we deduce limn→+∞ fn(Yn) = f (Y )P-a.s. Using the Lebesgue
property we conclude that (17) holds true, providing
continuity. �

Proof of theorem 3.3 Consider first the case p ∈ [1, ∞). We
prove something stronger, namely, that the thesis holds for
every (Qn)n, Q ⊆ Probp(R) such that limn→+∞ Wp(Qn, Q) =

0 instead of only for (̂PN )N and PX . First, observe that by
proposition 3.5 the function

(ϕ, Q) �→ ρ̃1 (ϕ|Q)+ ρ̃2 (Id − ϕ|Q)

is continuous on A0
Lip × Probp(R), and A0

Lip is compact by
lemma 3.2. Berge’s Theorem (Aliprantis and Border 2006,
theorem 17.31) guarantees that

ρ̃1 (·|Q)�ρ̃2 (·|Q) (Id) = lim
N→+∞

ρ̃1 (·|Qn)�ρ̃2 (·|Qn) (Id)

and that the correspondence � : Probp(R) ⇒ A0
Lip defined by

�(Q) := argmin
{
ρ̃1 (ϕ|Q)+ ρ̃2 (Id − ϕ|Q) : ϕ ∈ A0

Lip

}
is upper hemicontinuous. Consider now the numerical
sequence (dQ(ϕ̂n, ϕ̂))n. Take an arbitrary subsequence and
relabeled it again by n. Using the upper hemicontinuity of
� (Aliprantis and Border 2006, theorem 17.20) and the con-
vergence of (Qn)n to Q, the sequence (ϕ̂n ∈ �(Qn))n ⊆ A0

Lip
has a limit point in �(Q), that we call ϕ̂∞. Up to pass-
ing to a further subsequence and relabeling, we may assume
that (ϕ̂n)n converges to ϕ̂∞ with respect to the distance d.
By definition of �, ϕ̂∞ induces an optimal allocation under
Q and for Y ∈ Lp(�,F , P) with PY = Q we get, and using
proposition 2.6,

ρ1�ρ2(Y ) = ρ1(ϕ̂∞(Y ))+ ρ2(Y − ϕ̂∞(Y )).

Since ρ1 is strictly convex, the minimizer is unique by
proposition 2.3 (recall that we fixed ϕ̂∞(0) = 0†). Thus,
P(ϕ̂(Y ) �= ϕ̂∞(Y )) = 0, or equivalently 0 = PY (ϕ̂ �= ϕ̂∞) =
Q(ϕ̂ �= ϕ̂∞). The latter Q-a.s. equality property yields
dQ(ϕ̂n, ϕ̂∞) = dQ(ϕ̂n, ϕ̂). Note now that, by construction,
dQ ≤ d. We conclude that

lim sup
n→+∞

dQ(ϕ̂n, ϕ̂) = lim sup
n→+∞

dQ(ϕ̂n, ϕ̂∞)

≤ lim
n→+∞ d(ϕ̂n, ϕ̂∞) = 0.

We have shown that starting from an arbitrary subsequence of
(dQ(ϕ̂n, ϕ̂∞))n there exists a further subsequence converging
to 0. This shows the desired property. For the case p = +∞,
the argument is exactly the same. Note only that for applying
proposition 3.5 we need to require the Lebesgue continuity.

The claims in the statement follow now from lemma 3.1.
�

The case of spectral risk measures: The convergence (14)
can be established in the context of spectral risk measures by
proving a stronger result.

† As a consequence of translation invariance, we can assume, with-
out loss of generality, that Q gives positive mass to every neigh-
borhood of 0. Then, given two optimal allocations ϕ1,ϕ2 ∈ A0

Lip,
proposition 2.3 implies that ϕ1 − ϕ2 = c Q-a.s., for some c ∈ R.
However, the definition of A0

Lip necessarily implies c = 0.
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Definition 4 Let p ∈ [1, ∞]. A functional ρ : Lp →
(−∞, ∞] is called a spectral risk measure if

ρ(X ) =
∫ 1

0
V@Rα(X )h(α) dα, (18)

for some non-increasing function h : [0, 1] → [0, ∞), called
spectral density, satisfying

∫ 1
0 h(p) dp = 1.

We refer to Pichler (2013a, 2013b) for a thorough anal-
ysis of the topic. In particular, the properties of h ensure
that ρ is convex, monotone, and cash additive. Moreover,
due to the properties of V@R, ρ is also law invariant and
positive homogeneous. Whenever ρ1 and ρ2 are both finite
spectral risk measures on Lp(�,F , P), p ∈ [1, +∞] (which is
the case for suitably integrable spectral densities as shown
in (Pichler 2013b, proposition 5 and theorem 11), assump-
tion 2.5 is thus satisfied. For p = +∞, ρ1 and ρ2 also satisfy
the Lebesgue property if the spectral densities h1, h2 are such
that ρ1 and ρ2 are well defined and finite on Lr(�,F , P) for
some r big enough, by the Extended Namioka-Klee Theorem.
This translates into an integrability requirement on h1, h2,
see (Pichler 2013b, proposition 5 and theorem 11), and holds
true for example if h1, h2 are bounded themselves. In both
cases, we are in the exact setup of theorem 3.3. However, we
can provide an explicit estimate for the convergence (14), as
detailed below.

Proposition 3.6 Let p ∈ (1, ∞) and ρ1, ρ2 : Lp(�,F , P)
→ R be law-invariant spectral convex risk measures,
with possibly different spectral densities h1, h2 ∈ L

p
p−1 ([0, 1],

B([0, 1]), Leb). Then,∣∣ρ1�ρ2(X )− ρ̃1
(·|̂PN (ω)

)
�ρ̃2

(·|̂PN (ω)
)
(Id)

∣∣
≤
[
‖h1‖ p

p−1
+ ‖h2‖ p

p−1

]
Wp(̂PN (ω), PX ) ∀ ω ∈ �. (19)

In particular, (14) holds.

Proof We see that, fixing ω ∈ � and taking P̂N (ω) as a
(deterministic) measure in Probp(R), we also have PX ∈
Probp(R) since X ∈ Lp(�,F , P), and

ρ1�ρ2(X )
Prop. 2.6= inf

{
ρ̃1 (f |PX )�ρ̃2

(Id − f |PX ) : f ∈ A0
Lip

}
≤ inf

{
ρ̃1
(
f |̂PN (ω)

)+ ρ̃2
(
Id − f |̂PN

)
: f ∈ A0

Lip

}
+ Wp(PX , P̂N ) ‖h1‖ p

p−1
+ Wp(PX , P̂N ) ‖h2‖ p

p−1

Prop. 2.6= ρ̃1
(·|̂PN

)
�ρ̃2

(·|̂PN (ω)
)
(Id)

+
[
‖h1‖ p

p−1
+ ‖h2‖ p

p−1

]
Wp(PX , P̂N (ω))

where the inequality follows from (Pichler 2013a, corollary
11). Interchanging the roles of PX , P̂N (ω), we get

ρ̃1
(·|̂PN (ω)

)
�ρ̃2

(·|̂PN (ω)
)
(Id) ≤ ρ1�ρ2(X )

+
[
‖h1‖ p

p−1
+ ‖h2‖ p

p−1

]
Wp(̂PN (ω), PX )

so that (19) holds. By lemma 3.1 there exists E ∈ F with
P(E) = 0 such that limN→+∞ Wp(PX , P̂N (ω)) = 0 for all ω ∈
� \ E. Thus, by (19), we have

ρ1�ρ2(X ) = lim
N→+∞

ρ̃1
(·|̂PN

)
�ρ̃2

(·|̂PN
)
(Id) ∀ ω ∈ � \ E.

�

4. Numerical experiments

In this section, we illustrate the results of a number of numer-
ical experiments that showcase the usefulness of the approxi-
mation developed in section 2. We first test our findings in the
case of entropic risk measures and expected shortfall, where
simple explicit formulas for the optimal allocations and for
the value of the inf-convolutions are known. We then con-
sider the more complex case of distortion risk measures and,
to conclude, we treat the case of heterogeneous agents adopt-
ing risk measures in two different classes, i.e. entropic and
distortion-type.

4.1. Description of the framework

We model two agents with reference risk measures ρ1 and ρ2

as those in the introduction. For the sake of comparison, we
consider a financial position X ∈ L∞(�,F , P), as it belongs
to the domain of each of those risk measures. The objective is
to approximate optimal allocations for the inf-convolution of
ρ1 and ρ2, which takes the form

ρ1�ρ2(X ) = inf
{
ρ̃1 (f |PX )+ ρ̃2 (Id − f |PX ) : f ∈ A0

Lip

}
.

To model the functions f and Id − f , we use two Fully
Connected Deep Neural Networks (DNNs) φ1 and φ2, respec-
tively. We observe that, while φ1 and φ2 explicitly parametrize
f and Id − f by design, the functions Id − φ1 and Id − φ2 are
proxies for Id − f and f respectively.

Let X̃ = (X1, . . . , XN ) be a sample of PX of size N with P̂N

its empirical measure. For i = 1, 2, we denote by ρ̂i the his-
torical risk measures associated to ρ1 and ρ2, namely, ρ̂i(·) :=
ρ̃i(· | P̂N ). Since we aim at finding allocations that realize
an inf-convolution value as close as possible to ρ1�ρ2(X ),
we need to find an appropriate and robust estimate of such a
quantity. While we could use the explicit parametrizations φ1

of f and φ2 of Id − f and minimize ρ̂1(φ1(X ))+ ρ̂2(φ2(X )),
another valid alternative is to use the implicit parametrizations
and minimize ρ̂1(Id − φ2(X ))+ ρ̂2(Id − φ1(X )). To have a
more robust estimate, we use their arithmetic average which
leads to the following loss function

Lρ1,ρ2(X̃ ) = 1

2

(
ρ̂1(φ1(X̃ ))+ ρ̂2(φ2(X̃ ))

+ρ̂1(X̃ − φ2(X̃ ))+ ρ̂2(X̃ − φ1(X̃ ))
)

(20)

and to the following parameterizations of f and Id − f

f1(x) := φ1(x)+ x − φ2(x)

2
,

f2(x) := φ2(x)+ x − φ1(x)

2
= Id(x)− f1(x).
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Not only these are more robust estimates, but as they
sum up to the identity, they provide acceptable alloca-
tions by construction. Theorem 3.3 guarantees the conver-
gence of the induced optimal allocations for the risk-sharing
problem.

To train the neural networks and obtain the estimators of the
theoretical optimum (�1,�2) := (ϕ̂, Id − ϕ̂) ∈ A0

Lip × A0
Lip,

we minimize (20) with the optimizer Adam Kingma and
Ba (2014). The precise choices of the learning rate, batch
size, the number of training epochs, and other implementa-
tion details are reported in the Appendix. To ensure a robust
framework, we train the DNNs multiple times and use their
average as the final estimate. To be more explicit, we train f1
and f2 for n times each starting from a different initialization.
We obtain n couples of neural networks (f k

1 , f k
2 ) and use their

arithmetic averages

�̂1(·) := 1

n

n∑
k=1

f k
1 (·), �̂2(·) := 1

n

n∑
k=1

f k
2 (·)

to estimate�1 and�2, respectively. In all our experiments we
chose n = 3.

To have a flexible framework, we allow the networks to
have three types of different activation functions:

σ(x) = Tanh(x), σ(x) = ReLu(x), σ(x) = x.

While the non-linear activation functions Tanh and ReLu
are standard choices in deep learning, the reason for includ-
ing the linear one will be apparent below. We incidentally
note that, since X is bounded, we have no issues in allow-
ing for unbounded activation functions. We report a review
of possible methodological and architectural enhancements in
appendix A.1.

To verify the stability and reliability of our framework, we
test our results with three different distributions

(i) X ∼ U[−1, 1], where U is the uniform distribution;
(ii) X ∼ N (0, 1), where N is the normal distribution;

(iii) X ∼ −Beta(2, 5), where Beta is the Beta distribution.

The uniform distribution is the most basic example and
it provides an easy setup to test our framework. A more
interesting example is the normal distribution because of its
well-known financial relevance. We note that in our experi-
ments we restricted to [−3, 3] in order to have a distribution
with bounded support. Finally, the Beta distribution presents
skewness and rare events, modeling the scarcity of data for
extreme losses. We chose the opposite of a Beta distribution
in order to represent the financially more relevant case of
pure losses.

4.2. Initial tests: entropic and expected shortfall case

To begin with, we test our framework in the well-known
cases of entropic risk measures and expected shortfalls, for
which explicit formulas are known. We start by recalling

that, as in Examples 2.8 and 2.9 in Filipović and Svindland
(2008),

Entrα�Entrβ(X ) = Entrα+β(X ),

ESα�ESβ(X ) = ESα∨β(X ). (21)

This means that we can directly compute the theoretical value
of the inf-convolution and compare it with the value Lρ1,ρ2(X̃ )
obtained by the DNNs. Additionally, we can calculate the L2

error (under PX ) between the estimated �̂1 and �̂2 and the
theoretical ones. As we show below, we found that the values
of the inf-convolutions achieved by all our trained networks
converge to the theoretical values and that �̂i approximates
�i up to a negligible error, for i = 1, 2.

• For the entropic case, we chose ρ1(X ) = Entr2(X )
and ρ2(X ) = Entr3(X ) which yield the optimal
allocation �1(x) = 2

2+3 x and �2(x) = 3
2+3 x;

• For the ES case, we chose ρ1(X ) = ES0.8(X )
and ρ2(X ) = ES0.7(X ). It is clear from (21) that
�1(x) = x and �2(x) = 0 is an optimal allocation.

We start by discussing the entropic case. Figure 1 shows the
comparison between the theoretical optimal allocations and
the average predicted �̂1 and �̂2 for the normal distribution
case and for the three activation functions. Every trained DNN
seems to match perfectly the theoretical allocations. Indeed,
we point out that the average predicted allocations in figure 1
are plotted with their respective ±3 standard deviation bands
across the n networks. In particular, for this case, we notice
that the uncertainty bands are invisible as they are almost
null. In figure 2(a), we show the comparison between the
average loss functions, along with the respective ±3 standard
deviation shaded band, and the theoretical infimum calculated
using (21). All three types of NNs achieve a loss that is close
to the theoretical value of the inf-convolution, up to a negligi-
ble error. In figure 2(b), for each model, we plot the standard
deviation of the loss function (20). Since the variance of the
three losses is decreasing, we are observing a stable conver-
gence. Table 1 collects the data regarding the errors for the
experiment with the standard normal distribution. We com-
puted the average relative error with respect to the theoretical
infimum, together with its standard deviation, and the L2 error
of �̂1 with respect to the theoretical �1. Table A1 reports the
same figures also for the cases of uniform and Beta distribu-
tions. We observe that the errors are all close to zero, meaning
that all our NNs reached convergence and they exhibited low
uncertainty, which is an indication of stable learning. Observe
that for the entropic case (as well as for ES) the optimal allo-
cation is a linear function, therefore, it belongs to the span of
the linear-activated DNN. We thus expect the linear activa-
tion to achieve the best performance. As we can appreciate
in table 1, this result is confirmed by our experiments. Addi-
tionally, we notice that also ReLu and Tanh are providing
satisfactory performances.

Similar considerations apply to the case of ES and we
obtain qualitatively and quantitatively the same results. As
an example, in figure 3 we show the results for the uni-
form distribution case. Regarding the convergence analysis,
we observe in figure 4 that all three types of NNs achieve a
loss that is only marginally distant from the theoretical value
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Figure 1. The entropic case – normal distribution – comparison of predicted vs. theoretical allocations. We train all models over 3 trials and
plot the average predicted allocation along with the ±3 standard deviations.

Figure 2. The entropic case – normal distribution – convergence analysis. (a) Average training loss along with ±3 standard deviation and
(b) Standard deviation of the loss.

Table 1. Average relative errors between the losses and the theo-
retical infimum, their standard deviation, and the average L2 error

between �̂1 and �1.

Entropic case – N (0, 1) – Infimum = 0.09656

Avg. Rel. Error Std. Rel. Error Avg. L2 Error �̂1
Linear %1.800 · 10−5 %1.172 · 10−5 1.788 · 10−7

ReLu %5.143 · 10−6 %6.341 · 10−5 4.096 · 10−5

Tanh %5.955 · 10−6 %1.814 · 10−6 5.813 · 10−5

of the inf-convolution. Additionally, we notice that the con-
vergence to such a value takes place with decreasing variance
of the losses, indicating a stable convergence. In figure 3 we
present the comparison between the average predicted �̂1

and �̂2, along with their respective ±3 standard deviation
shaded band, and the theoretical optimal allocations for the
uniform distribution case. A consideration, which is specific
to the ES case, is now due. The optimal allocation is of the
form �1(x) = x and �2(x) = 0, and the DNN needs to learn
the constant function in the latter case. Consistently with the
known fact that using nonlinear functions for the (unsuper-
vised) learning of constant functions is a challenging task,
we find that ReLu and Tanh underperform with respect to the
linear DNN.

In table 2, we finally present the average relative error with
respect to the theoretical infimum, its standard deviation, and
L2 error of �̂1 with respect to �1. Table A2 reports the same
figures also for the case of normal and Beta distributions.

4.3. Convolution of distortion risk measures

We here consider the case where both ρ1 and ρ2 are distortion
risk measures, as in (3), with respect to some discrete proba-
bilities μ1, μ2. Let N1, N2 be two given integers, and consider
the risk measures

ρ1(X ) :=
N1∑
j=1

μ1jESα1j(X ), ρ2(X ) :=
N2∑
j=1

μ2jESα2j(X ),

where μij > 0 with
∑Ni

j=1 μij = 1 and 0 < αij < 1 for j =
1, . . . , Ni and for i = 1, 2. Some semi-explicit expressions of
the optimal allocations are known for this case, in particular,
an optimal allocation can be found as a linear combination of
ReLu functions, possibly composed with translation maps—
see Example 3.1 in Jouini et al. (2008) and also Appendix A
of Embrechts et al. (2018) for a more general case† . Hence,

† We thank an anonymous referee for pointing out this fact.
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Figure 3. Expected shortfall – uniform distribution – comparison of predicted vs. theoretical allocations. We train all models over 3 trials
and plot the average predicted allocation along with the ±3 standard deviations.

Figure 4. Expected shortfall – uniform distribution – convergence analysis. (a) Average training loss along with ±3 standard deviation and
(b) Standard deviation of the loss.

we expect the ReLu-activated DNN to achieve the best per-
formance. Differently from the entropic and ES cases, the
problem has a non-linear solution and we expect the linear-
activated DNN to perform poorly. Nevertheless, for the sake
of consistency in our tests, we included the linear activation
in all experiments. As an example, we chose

ρ1(X ) = 0.5ES0.8(X )+ 0.5ES0.7(X ),

ρ2(X ) = 0.7ES0.9(X )+ 0.3ES0.5(X ).

Figure 5 shows the average predicted �̂1 and �̂2 for the case
of the Beta distribution and for the three activation functions.
As we can observe, the DNNs trained with non-linear activa-
tion functions agree on the shape of the solution, whereas the
linear-activated one is clearly different.

As anticipated before, we expect the optimal allocations to
be linear combinations of ReLu activations. Consistently with
the theory, if we look at the average predicted �̂1(x) for the
case of ReLu, as in figure 6(b), we observe that such expected
behavior is captured. Figure 6(a) shows the average loss func-
tions as a function of the training epochs. First of all, we notice
that the linear NN achieves a loss level that is sensibly larger
than those achieved by the ReLu and the Tanh DNNs, con-
firming the expectations of it poor performance. Secondly, we

Table 2. Average relative errors between the losses and the theo-
retical infimum, their standard deviation, and the average L2 error

between �̂1 and �1.

Expected Shortfall – U [−1, 1]) – Infimum = 0.2006

Avg. Rel. Error Std. Rel. Error Avg. L2 Error �̂1
Linear %2.846 · 10−4 %2.270 · 10−3 9.701 · 10−6

ReLu %1.379 · 10−2 %8.171 · 10−3 1.817 · 10−2

Tanh %2.742 · 10−2 %3.301 · 10−3 2.521 · 10−3

notice that the loss decreases with decreasing variance, indi-
cating a stable convergence with low uncertainty in all three
cases.

Finally, in table 3, we present the average achieved losses,
together with the uncertainty of their estimates, for all acti-
vation functions and for all distributions. In line with the
theoretical predictions, the DNN activated with a ReLu func-
tion is the one performing best in terms of average loss: all
three loss values are, by construction, greater or equal to the
theoretical infimum, and the best performance is understood
in the sense of achieving the lowest value. The Tanh-activated
DNN is comparably reliable. From table 3, we can see that
in some cases the linear-activated DNN shows the most sta-
ble convergence, namely the lowest standard deviation of
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Figure 5. Distortion measures – beta distribution – predicted allocations. We train all models over 3 trials and plot the average predicted
allocation along with the ±3 standard deviations.

Figure 6. Distortion measures – beta distribution – convergence analysis and optimal ReLu. (a) Average training loss along with ±3 standard
deviation and (b) �̂1(x) for ReLu-activated DNN as a weighted sum of ReLu activations.

Table 3. Average loss of the achieved
training losses together with its standard

deviation.

Distortion Measure – U [−1, 1])

Avg. Loss Std. Loss
Linear 0.220786 1.79364 · 10−7

ReLu 0.210493 1.43078 · 10−6

Tanh 0.210722 4.81990 · 10−5

Distortion risk measures – N (0, 1)

Linear 0.371297 1.12391 · 10−7

ReLu 0.355218 2.53271 · 10−7

Tanh 0.355505 3.12838 · 10−5

Distortion Measure – −Beta(2, 5)

Linear 0.341245 9.27940 · 10−6

ReLu 0.338251 2.52160 · 10−6

Tanh 0.338419 2.66384 · 10−6

losses. However, it converges to a loss value that is signif-
icantly higher than the other two. This is not unexpected
since, by design, the linear-activated DNN is unable to rep-
resent a nonlinear function and, therefore, exhibits poorer
performances.

4.4. Heterogeneous agents

In our last experiments, we consider two heterogeneous
agents, in the sense that one adopts an entropic risk measure
while the other one opts for a distortion-type risk measure. In
the first of such experiments, the risk measures are

ρ1(X ) = ES0.9(X ), ρ2(X ) = Entr0.3(X ). (22)

From Jouini et al. (2008, proposition 3.2) or Rüschen-
dorf (2013, theorem 11.22), the optimal allocation is known to
be induced by (f , Id − f ) = (−(x − k)−, max(x, k)) for some
(non-explicit) constant k. In line with the previous subsec-
tions, we show an example of the average predicted �̂1 and
�̂2. In figure 7, we plot the predicted allocations for the Beta
distribution, for the three different activation functions. Once
again, we expect the solution to be non-linear and we can
observe that the optimal allocations found by ReLu and Tanh-
activated DNNs are comparable, whereas the one found by
the linear-activated DNN differs significantly. In figure 8(b)
we isolated the allocation �̂1 found by the ReLu DNN which,
as we will see below, is the one that performed best. We
notice that the desired behavior of the optimal allocations is
well-captured.
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Figure 7. Heterogeneous agents – case equation (22) – beta distribution – predicted allocations. We train all models over 3 trials and plot
the average Predicted Allocation along with the ±3 standard deviations.

Figure 8. Heterogeneous measures – case equation (22) – beta distribution – convergence analysis and optimal ReLu. (a) Average training
loss along with ±3 standard deviation and (b) �̂1(x) for ReLu-activated DNN is (almost) as per theoretical prediction.

Figure 8(a) shows the average loss functions as a function
of the training epochs, together with their uncertainty-shaded
bands. We notice that all networks exhibit stable convergence.
However, the linear-activated network achieves a loss level
that is sensibly larger than those achieved by the ReLu and
Tanh-activated ones. From the picture, it is already clear that
Relu is the one performing best in this case. This is confirmed
by the data that we collect in table 4, namely, the average
achieved loss together with the uncertainty of their estimates.
Nevertheless, we note that while the Tanh NN underper-
forms with respect to the ReLu one, it provides comparable
performances.

In our last experiment, we consider a case where, to the
best of our knowledge, no theoretical information is avail-
able. Again, we consider two heterogeneous agents, the first
one opting for a distortion risk measure, and the second one
adopting an entropic risk measure. More precisely, the risk
measures are

ρ1(X ) = 0.7ES0.8(X )+ 0.3ES0.7(X ), ρ2(X ) = Entr0.3(X ).
(23)

In figure 9 we plot the average predicted �̂1 and �̂2 for the
beta distribution, for the three different activation functions.

Table 4. Average loss of the achieved
training losses together with its standard

deviation.

Case equation (22) – U [−1, 1])

Avg. Loss Std. Loss
Linear 0.0962926 1.62093 · 10−6

ReLu 0.0837376 7.15505 · 10−6

Tanh 0.085397 7.64700 · 10−5

Case equation (22) – N (0, 1)

Linear 0.185575 1.65563 · 10−6

ReLu 0.166919 2.50091 · 10−4

Tanh 0.169095 9.12596 · 10−6

Case equation (22) – −Beta(2, 5)

Linear 0.306628 1.16732 · 10−4

ReLu 0.300616 2.28480 · 10−6

Tanh 0.301437 8.87485 · 10−5

As in the cases in section 4.3 and in the previous hetero-
geneous case, we anticipate a non-linear behavior, which
translates into linear activated DNNs underperforming signif-
icantly. We can observe that the optimal allocations found by
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Figure 9. Heterogeneous agents – case equation (23) – beta distribution – predicted allocations. We train all models over 3 trials and plot
the average predicted allocation along with the ±3 standard deviations.

Figure 10. Heterogeneous measures – case equation (23) – beta distribution – convergence analysis and optimal ReLu. (a) Average training
loss along with ±3 standard deviation and (b) �̂1(x) for ReLu-activated DNN as a weighted sum of ReLu functions.

Table 5. Average loss of the achieved
training losses together with its standard

deviation.

Case equation (23) – U [−1, 1])

Avg. Loss Std. Loss
Linear 0.2064738 8.26712 · 10−7

ReLu 0.1786352 1.22513 · 10−6

Tanh 0.1807351 4.32114 · 10−5

Case equation (23) – N (0, 1)

Linear 0.3662076 9.0044 · 10−7

ReLu 0.32997002 2.92006 · 10−5

Tanh 0.3324212 1.65775 · 10−4

Case equation (23) – −Beta(2, 5)

Linear 0.3238797 1.00014 · 10−6

ReLu 0.3132883 1.25900 · 10−6

Tanh 0.3147001 1.70660 · 10−4

ReLu and Tanh-activated DNNs are comparable. In figure 10
we isolated the allocation �̂1 found by the ReLu DNN which,
as in the previous heterogeneous case of section 4.4, is the one
that performed best, which is confirmed by table 5.

All networks exhibit stable convergence. Still, as expected,
the linear-activated DNN achieves a far larger loss level. The
Tanh NN underperforms with respect to the ReLu one, yet still
provides comparable performances.
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Appendices

Appendix 1. Implementation details and additional
experimental results

All code is implemented in Python and the Deep Learning library
used is PyTorch. In each experiment, the dataset X̃ is of size
N = 100, 000, while the batch size is b = 1000. All the neu-
ral networks have 3 hidden layers of 100 neurons each and have
been optimized with Adam. More precisely, the learning rate
is 10−6 while all other settings of Adam are as per default setting.
We remind that it is a very well-known result of convex optimiza-
tion that the learning rate has to be smaller than twice the inverse
of the largest eigenvalue of the loss function for Gradient Descent
to converge. In practice, this is a valuable indication also in noncon-
vex optimization. Even if our choice for the learning rate might seem
unusual, such a low value was necessary for our experiments, as we
observed that higher ones would lead to instability in the optimiza-
tion process. This is oftentimes an indication that the optimization
problem at hand is rather nonlinear and the loss landscape is irregu-
lar, together with its derivatives. To make the convergence even more
stable, we used the ReduceLROnPlateau scheduler for the learning
rate, with patience equal to 1000 and threshold equal to 10−6,
while all other parameters are as per default specification. Finally,
all experiments have been run for a number of epochs equal to
300, apart from those for the Distortion Measures where the number
of epochs is 200. The optimal hyperparameters are the result of
fine-tuning via extensive grid search.

We finally complete the exposition of the numerical results for the
entropic risk measure and expected shortfall experiments. Tables A1
and A2 contain the average relative error with respect to the the-
oretical infimum, together with its standard deviation, and the L2

error of �̂1 with respect to the theoretical ϕ̂ for all distributions and
activation functions.

In our experiments, we observe that both ReLu and Tanh activa-
tion functions performed well in all cases, even when the solution
was known to be linear. ReLu seemed to perform better in most of
the cases. This is due to the fact that in some cases the semi-explicit
solution has a piecewise linear behavior.

A.1. Possible enhancements

The deep learning literature offers a variety of architectural and
methodological enhancements that could be used to further push the
results that we obtained.

Table A1. Average relative errors between the losses and the the-
oretical infimum, their standard deviation, and the average L2 error

between �̂1 and �1.

Entropic case – U [−1, 1] – Infimum = 0.03423

Avg. Rel. Error Std. Rel. Error Avg. L2 Error �̂1
Linear %2.466 · 10−4 %2.888 · 10−4 1.207 · 10−8

ReLu %9.067 · 10−4 %4.682 · 10−4 1.802 · 10−4

Tanh %1.135 · 10−3 %3.498 · 10−4 1.077 · 10−4

Entropic case – N (0, 1) – Infimum = 0.09656

Linear %1.800 · 10−5 %1.172 · 10−5 1.788 · 10−7

ReLu %5.143 · 10−6 %6.341 · 10−5 4.096 · 10−5

Tanh %5.955 · 10−6 %1.814 · 10−6 5.813 · 10−5

Entropic case – Beta(2, 5) – Infimum = 0.2876

Linear %8.979 · 10−5 %2.128 · 10−5 3.759 · 10−8

ReLu %7.943 · 10−5 %5.504 · 10−5 3.146 · 10−4

Tanh %1.001 · 10−3 %3.202 · 10−5 1.299 · 10−4

Table A2. Average relative errors between the losses and the the-
oretical infimum, their standard deviation, and the average L2 error

between �̂1 and �1.

Expected Shortfall - U [−1, 1]) - Infimum = 0.2006

Avg. Rel. Error Std. Rel. Error Avg. L2 Error �̂1
Linear %2.846 · 10−4 %2.270 · 10−3 9.701 · 10−6

ReLu %1.379 · 10−2 %8.171 · 10−3 1.817 · 10−2

Tanh %2.742 · 10−2 %3.301 · 10−3 2.521 · 10−3

Expected Shortfall - N (0, 1)− Infimum = 0.3459

Linear %2.961 · 10−3 %1.070 · 10−3 3.050 · 10−5

ReLu %1.910 · 10−2 %1.036 · 10−2 3.325 · 10−2

Tanh %1.530 · 10−1 %1.867 · 10−2 2.511 · 10−2

Expected Shortfall - Beta(2, 5)− Infimum = 0.3343

Linear %6.031 · 10−4 %5.253 · 10−4 1.813 · 10−5

ReLu %1.455 · 10−3 %5.449 · 10−4 3.969 · 10−2

Tanh %1.017 · 10−1 %1.506 · 10−2 2.284 · 10−3

One could include several other activation functions, such as
GELU (Hendrycks and Gimpel (2016)) or ELU which obtained
recent success in NLP (Brown et al. (2020)) and Image Classification
(Clevert et al. (2015)), respectively. Similarly, one could try differ-
ent optimizers which may converge to more stable regions of the loss
landscape. For example, recent optimizers that found great success
in NLP and Computer Vision are SAM and its variants. As detailed
in Wen et al. (2023) and Compagnoni, Orvieto, et al. (2023), this
class of optimizers drives the dynamics towards flatter regions of the
landscapes which result in provenly more stable DNNs. Other possi-
bilities include standard techniques such as Batch Normalization and
Residual Connections which are proven to stabilize the optimization
process.

Finally, since the functions we are learning are monotonic, an
interesting approach, suggested by an anonymous referee, would be
to enforce the monotonicity of the approximating functions. This
could be attained by leveraging specific network structures such as
in Daniels and Velikova (2010) or suitable penalization terms (Liu
et al. 2020). While all our experiments reached convergence without
the need of imposing monotonicity, this might be necessary in other
cases where convergence is more elusive. As a side note, we remark
that not enforcing a priori monotonicity allows for a further sanity
check in the experiments, as we can check if the monotone behavior
of the optima is learned without any external enforcement.

It is worth noting that, for all the architectural changes that would
alter the DNNs, one should of course provide the proof of suitable
versions of theorems 2.8, 2.11 and 3.3 for this very specific class
of NNs. Since our experiments already achieved satisfactory results,
there is no compelling reason to do so at the moment, and we leave
these for future research.

Appendix 2. Modeling alternatives

As suggested by an anonymous referee, there might be other possible
ways to successfully model the functions f and Id − f , for exam-
ple, using a basis-based approach, such as Random Feature Models,
Rahimi and Recht (2008) or using Kernel functions (Scholkopf and
Smola 2018).

In the basis-based approach, it is required to fix (or randomly gen-
erate) a number of representations of the input and then to linearly
combine them to fit the output via a linear layer. These techniques
have proven to be effective and computationally cheap in many
fields (Rahimi and Recht 2007). However, the key to their success
is a careful design and selection of the (possibly random) features,
an operation which is not always straightforward (Compagnoni,



18 M. Burzoni et al.

Scampicchio, et al. 2023). Much differently, DNNs are able to learn
and adapt the features during the optimization procedure.

The second approach is based on Reproducing Kernel Hilbert
Space (RKHS), also known in the Machine Learning community as
kernel methods. This is a very powerful set of techniques that maps
the input data into a higher (possibly infinite) dimensional space, in
which it is easier to separate data points respect to their native space.
These methods found success in many applications (Scholkopf and
Smola 2018) such as in Classification, Signal Detection (Kailath
and Weinert 1975), and Function Emulation (Schölkopf et al. 2015).
However, we find that the kernel trick (Theodoridis and Koutroum-
bas 2006) at the basis of these methods does not allow us to find a
closed-form solution for our problem. Therefore, while this would
allow us to face a convex optimization problem, we would still have
to rely on an optimizer such as SGD (or Adam) to actually find the
unique solution. In this regard, we recall that using RKHS requires
calculating the Gramian matrix, which has a complexity of O(N2),
where N is the number of data points. Therefore, even just evaluat-
ing the loss function in equation (20) has a complexity of O(N2),
for each training epoch. This cost is additional to the computation
of gradients and the update of the parameters in the optimization
step, therefore, we expect a much higher computational cost and
less scalability of RKHS-based techniques compared to that of DNN.
From a theoretical point of view, consistency results for RKHS-based
techniques in the literature are only available for the Supervised
Learning case and it is not clear if they would be easily adapted to
our Unsupervised Learning setting.

To conclude, while many alternatives are present, many of them
present criticalities such as higher computational cost and design
challenges, that DNNs easily avoid.

A.2. Basis-based approach

In the experiments of section 4, we considered DNN architec-
tures with 3 hidden layers. As we discussed above, basis-based
approaches offer a valid alternative that has been effectively used
in many fields and comes at a cheap computational cost. To imple-
ment these models one has to extract some fixed nonlinear static
features (the basis) and combine them linearly into the output. From
a theoretical point of view, we expect these methods to approximate
well the solution: they may be seen as a particular case of the gen-
eral theory we developed in section 2–3, where one hidden layer is
hard-coded to match the specific form of the basis. However, con-
sistently with the literature, we expect such models to perform well
only if the basis is carefully chosen and this requires some a priori
knowledge of the sought solution; In our case, the functional shape
of�1 and�2. We confirm this expected downside by replicating the
experiments of section 4 for the following methods† :

(i) RFNN: We parametrize �̂1 and �̂2 with a random feature
neural network whose base architecture is the same as the
one in section 4, but where only the last layer is trained;

(ii) LCRF: We parametrize �̂1 and �̂2 as Linear Combinations
of ReLu Functions:

�(x) =
100∑
i=0

ξiReLu(x − Ki), Ki := x0 + (x1 − x0)
i

100

where [x0, x1] is the range of the random variable of interest
X, and optimize only over the parameters ξi;

(iii) LCGRBF: We parametrize �̂1 and �̂2 as Linear
Combinations of Gaussian Radial Basis Functions:

�(x) =
100∑
i=0

ξi e−λ(x−Ki)
2
, Ki := x0 + (x1 − x0)

i

100

with x0, x1 as above, and optimize only over the parameters
ξi and λ.

† These examples were all suggested by an anonymous referee whom
we thank.

Table A3. Average loss of the achieved train-
ing losses together with its standard deviation.

Case equation (23) – −Beta(2, 5)

Avg. Loss Std. Loss
RFNN 0.3145099 4.65897 · 10−4

LCRF 0.3142185 9.22487 · 10−5

LCGRBF 0.3152364 5.41497 · 10−6

DNN-ReLu 0.3132883 1.25900 · 10−6

Since the loss function for these models is convex and admits a
unique global minimum, we used Gradient Descent which is guar-
anteed to converge to such an optimum. This aspect is however not
particularly decisive since, in all our experiments, we never expe-
rienced convergence problems for the general DNN algorithm. The
main advantage is actually the interpretability of the solution: The
form of the solution is fixed and only the coefficients of the linear
combination are optimized.

For all models, we initialize the learning rate at η = 0.1, while
the parameter λ for the LCGRBF model is equal to 1.0. To make
the convergence even more stable, we used the ReduceLROnPlateau
scheduler for the learning rate, with patience equal to 1000 and
threshold equal to 10−6, while all other parameters are as per
default specification. Finally, all experiments have been run 3 times
for a number of epochs equal to 300.

We first compare these three methods with each other and then
we compare them to the ones based on DNNs from section 4. We
present the results for the heterogeneous case of section 4.4 and for
the entropic case of section 4.2 using X ∼ −Beta(2, 5). Analogous
conclusions can be found for the other distributions.

Heterogeneous agents. Figure A1 shows the comparison of the
loss functions of the three methods described above in the framework
of section 4.4, case (23). To visualize this better, the right of such a
figure shows the comparison toward the end of the training. The best
performance is achieved by the LCRF model, followed by the RFNN
model, and finally by the LCGRBF model; See also table A3, where
we report the average and standard deviation of the loss at conver-
gence. The left of figure A2 shows instead the comparison of the loss
functions of the LCRF model against the DNN-based models. Once
again, we provide a zoom towards the end of training on the right of
such a figure. Together with the comparison of table A3 we confirm
that a DNN with ReLu activations provides a better approximation
of the solution, both in terms of average loss and in terms of the
uncertainty of the estimate. Note that, although sub-optimal, LCRF
achieves a loss level that is comparable with that of DNN, however,
the variance is much larger.

Entropic case. While in the above experiment, the performance
of the basis-based models was satisfying, in the entropic case this
does not hold true. As above, we first identify the best of such
methods by comparing their loss functions (see figure A3) and the
average relative errors between the losses and the theoretical infi-
mum, their standard deviation, and the average L2 error between �̂1
and �1 (see table A4). In this case, RFNN exhibited the best per-
formance. We next compare it against all the DNN-based ones. The
striking result of figure A3 shows the limitations of basis-based mod-
els which underperformed all the DNN-based models: The average
relative error with respect to the theoretical infimum achieved by
RFNN is two orders of magnitude worse than the ReLu-DNN model
(see table A4).

Discussion. The fact that deep networks outperform basis-based
methods is not surprising as they are intrinsically more powerful:
instead of fixing some static features, the algorithm will learn such
features from the data. On the other hand, the convexity of the loss
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Figure A1. Heterogeneous agents – case equation (23) – beta distribution – we train all models over 3 trials and plot the average loss along
with the ±3 standard deviations. On the left, we compare the basis-based models among each other, and on the right, we provide a zoom
towards the end of training.

function for basis-based methods allows Gradient Descent to find the
optimal solution faster than Adam does for the DNNs. We conclude
that DNN-based models are more flexible and achieve better perfor-
mance on a greater variety of different setups. Nevertheless, both

are valid alternatives. The choice ultimately boils down to assessing
the trade-off between accuracy of the solution, for which the DNN
approach is better, and interpretability of the solution, for which the
basis-based approach is better.

Figure A2. Heterogeneous agents – case equation (23) – beta distribution – we train all models over 3 trials and plot the average loss along
with the ±3 standard deviations. On the left, we compare the DNN-based models among each other together with the LCRF model. On the
right, we provide a zoom towards the end of training.
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Figure A3. Entropic case equation (21) – beta distribution – we train all models over 3 trials and plot the average loss along with the ±3
standard deviations. On the left, we compare the basis-based models among each other, and on the right, we provide a zoom towards the end
of training.

Table A4. Average relative errors between the losses and the theoretical infimum,
their standard deviation, and the average L2 error between �̂1 and �1.

Entropic case – Beta(2, 5)– Infimum = 0.2876

Avg. Rel. Error Std. Rel. Error Avg. L2 Error �̂1
RFNN %2.359 · 10−3 %1.698 · 10−3 1.177 · 10−3

LCRF %3.999 · 10−3 %1.394 · 10−3 4.904 · 10−3

LCGRBF %8.889 · 10−3 %2.849 · 10−3 8.763 · 10−2

DNN-ReLu %7.943 · 10−5 %5.504 · 10−5 3.146 · 10−4

Figure A4. Entropic case equation (21) – beta distribution – we train all models over 3 trials and plot the average loss along with the ±3
standard deviations. On the left, we compare the DNN-based models among each other together with the RFNN model. On the right, we
provide a zoom towards the end of training.
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