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Abstract

Using stochastic differential equation (SDE) approximations, we study the dynamics of Dis-
tributed SGD, Distributed Compressed SGD, and Distributed SignSGD under (L0, L1)-smoothness
and flexible noise assumptions. Our analysis provides insights – which we validate through simu-
lation – into the intricate interactions between batch noise, stochastic gradient compression, and
adaptivity in this modern theoretical setup. For instance, we show that adaptive methods such
as Distributed SignSGD can successfully converge under standard assumptions on the learning
rate scheduler, even under heavy-tailed noise. On the contrary, Distributed (Compressed) SGD
with pre-scheduled decaying learning rate fails to achieve convergence, unless such a schedule
also accounts for an inverse dependency on the gradient norm – de facto falling back into an
adaptive method.

1 Introduction

Understanding the dynamics of stochastic optimization algorithms is crucial, especially in distributed
machine learning settings where batch noise, compression, and adaptivity significantly impact
convergence and generalization. Despite extensive studies in the literature, the interplay among
these three aspects under the general condition of (L0, L1)-smoothness remains underexplored.

Contributions. Our key contributions include:

• Establishing convergence bounds for Distributed SGD (DSGD), Distributed Compressed SGD
(DCSGD), and Distributed SignSGD (DSignSGD) under the (L0, L1)-smoothness condition;

• Showcasing how normalizing the update step of D(C)SGD naturally emerges as a design strategy
to ensure convergence, thus confirming the superiority of adaptive methods for ill-conditioned
loss landscapes, especially for pathological batch noise or when unbiased compression is used;

• Highlighting that an adaptive method such as DSignSGD converges even under heavy-tailed
noise with standard assumptions on the learning rate scheduler.

∗This manuscript is a work in progress: We welcome comments.
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2 Related work

SDE Approximations and Applications. In [Li et al., 2017], a rigorous theoretical framework
was introduced to derive SDEs that faithfully model the stochastic behavior intrinsic to optimization
algorithms widely employed in machine learning. Since then, such SDE-based formulations have
found application across several domains, including stochastic optimal control for tuning stepsizes
[Li et al., 2017, 2019] and batch sizes [Zhao et al., 2022]. Notably, SDEs have been instrumental in
analyzing convergence bounds and stationary distributions [Compagnoni et al., 2023, 2024, 2025b],
scaling laws [Jastrzebski et al., 2018, Compagnoni et al., 2025b,a], implicit regularization effects
[Smith et al., 2021, Compagnoni et al., 2023], and implicit preconditioning [Xiao et al., 2024, Marshall
et al., 2025].

Interplay of noise, compression, and adaptivity under (L0, L1)-smoothness Previous
research has extensively studied the effect of batch noise, compression, and adaptivity on the
convergence of optimizers. Batch noise significantly influences stochastic gradient algorithms,
affecting their convergence speed and stability Simsekli et al. [2019], Zhang et al. [2020a], Kunstner
et al. [2024], Compagnoni et al. [2025b]. Noise characteristics such as heavy-tailed distributions have
been shown to profoundly impact the optimization trajectories, necessitating robust algorithmic
strategies Şimşekli et al. [2019], Gorbunov et al. [2021]. Compression methods, including unbiased
techniques such as sparsification and quantization Alistarh et al. [2017], Stich et al. [2018], Mishchenko
et al. [2024] and biased approaches like SignSGD Bernstein et al. [2018], Balles and Hennig [2018], are
critical for reducing communication overhead in distributed training. These compression techniques
come with theoretical guarantees under various smoothness assumptions Alistarh et al. [2017],
Gorbunov et al. [2020], Mishchenko et al. [2024], Compagnoni et al. [2025a]. Adaptive methods such
as SignSGD normalize gradient elements to cope effectively with large or heavy-tailed gradient noise,
thus demonstrating improved empirical robustness Safaryan and Richtarik [2021], Compagnoni et al.
[2025b,a], Kornilov et al. [2025].

However, most of the aforementioned works rely on restrictive assumptions such as L-smoothness, i.e.,
the L-Lipschitz continuity of the gradient. To relax this condition, Zhang et al. [2020a] introduces
and empirically validates the (L0, L1)-smoothness assumption, which allows the norm of the Hessian
to be bounded by an affine function of the gradient norm, thereby significantly expanding the
class of admissible problems. Various (stochastic) first-order methods have been analyzed under
(L0, L1)-smoothness, including Clip-SGD and its variants Zhang et al. [2020a,b], Koloskova et al.
[2023], Reisizadeh et al. [2025], Gorbunov et al. [2025], Vankov et al. [2025], Normalized SGD and
its variants Zhao et al. [2021], Chen et al. [2023], Hübler et al. [2024], SignSGD Crawshaw et al.
[2022], AdaGrad Faw et al. [2023], Wang et al. [2023], Adam Wang et al. [2022], Li et al. [2024], and
SGD Li et al. [2023]. In the context of compressed communication, Khirirat et al. [2024] proposed
and analyzed a momentum-based variant of normalized EF21-SGD Richtárik et al. [2021] under the
assumption of bounded noise variance.

To the best of our knowledge, no study has jointly considered all these aspects, namely, batch noise,
communication compression, and adaptivity, under the (L0, L1)-smoothness condition. In particular,
we consider flexible noise assumptions ranging from bounded to unbounded variance, and even
encompassing heavy-tailed noise. Our work closes this gap by providing a comprehensive analysis of
their interplay within a unified theoretical framework.

3 Preliminaries
Distributed Setup. Let us consider the problem of minimizing an objective function expressed
as an average of N functions: minx∈Rd

[
f(x) := 1

N

∑N
i=1 fi(x)

]
, where each fi : Rd → R is lower

bounded and twice continuously differentiable, and represents the loss over the local data of the
i-th agent. In our stochastic setup, each agent only has access to gradient estimates: let ni be the
number of datapoints accessible to agent i; at a given x ∈ Rd, agent i estimates ∇fi(x) using a batch
of data γi ⊆ {1, . . . , ni}, sampled uniformly with replacement and uncorrelated from the previously
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sampled batches. Given the sampling properties above, this estimate, which we denote by ∇fi,γi(x),
can be modeled as a perturbation of the global gradient: ∇fi,γi(x) = ∇f(x) + Zi(x).

Noise assumptions. We assume the sampling process and agent configurations are such that, for
all x ∈ Rd and each agent pair (i, j) with i ̸= j, Zi(x) is independent of Zj(x). Regarding assumptions
on the noise structure, we always assume that at each x ∈ Rd, Zi(x) is absolutely continuous and
with coordinate-wise symmetric distribution. If we discuss the setting Zi(x) ∈ L1(Rd), then we
assume E[Zi(x)] = 0. Last, if Zi(x) ∈ L2(Rd), we denote Σi(x) := Cov(Zi(x)).

Next, we define our two structural assumptions. The first one strictly concerns the global landscape;
the second concerns how global landscape features affect the noise distribution of each agent.

Definition 3.1 (Zhang et al. [2020a]). f is (L0, L1)-smooth (L0, L1 ≥ 0) if, ∀x ∈ Rd,
∥∥∇2f(x)

∥∥ ≤
L0 + L1∥∇f(x)∥.
Definition 3.2 (Mod. of the assumptions from Schmidt and Roux [2013], Vaswani et al. [2019]).
The gradient noise for agent i has (σ2

0,i, σ
2
1,i)-variance if ∥Σi(x)∥∞ ≤ σ2

0,i + σ2
1,i∥∇f(x)∥22. If σ1,i = 0,

the noise has bounded variance.

SDE approximations. The following definition formalizes the idea that an SDE can be a
“reliable surrogate” to model an optimizer. It is drawn from the field of numerical analysis of
SDEs (see Mil’shtein [1986]) and it quantifies the disparity between the discrete and the continuous
processes.

Definition 3.3. A continuous-time stochastic process (Xt)t∈[0,T ] is an order α weak approximation
of a discrete stochastic process (xk)

⌊T/η⌋
k=0 if for every polynomial growth function g, there exists a

positive constant C, independent of η, such that maxk=0,...,⌊T/η⌋ |Eg (xk)− Eg (Xkη)| ≤ Cηα.

Optimizers and SDEs. We study: 1) DSGD defined as xk+1 = xk − η
N

∑N
i=1∇fi,γi(xk) and

whose SDE is defined in Eq. 27 (see Thm. 3.2 in Compagnoni et al. [2025a]); 2) DCSGD defined
as xk+1 = xk − η

N

∑N
i=1 Cξi (∇fi,γi(xk)), where the stochastic compressors Cξi are independent for

different i and satisfy (i) Eξi [Cξi(x)] = x and (ii) Eξi

[
∥Cξi(x)− x∥22

]
≤ ωi∥x∥22 for some compression

rates ωi ≥ 0: Its SDE is defined in Eq. 70 (see Thm. 3.6 in Compagnoni et al. [2025a]); 3) DSignSGD
defined as xk+1 = xk − η

N

∑N
i=1 sign(∇fi,γi(xk)) and whose SDE is in Eq. 94 (see Thm. 3.10 in

Compagnoni et al. [2025a]).

Importantly, extensive experimental validation [Paquette et al., 2021, Malladi et al., 2022, Com-
pagnoni et al., 2024, 2025a,b] shows that the SDEs do track their respective optimizers accurately
on a variety of architectures, e.g., MLPs, ResNets, and ViTs.

4 Theoretical Results
Recall that, in the continuous-time setup, the dynamics of the iterates is modeled by a stochastic
process Xt solution to an SDE model. In this setting, the learning rate is a scalar factor in the SDE
influencing both its drift and its diffusion. To decouple adaptivity from scheduling, we parametrize our
learning rate as a product : ηηt. To ensure convergence, we always assume ηt satisfying the Robbins
and Monro [1951] conditions: For ϕi

t =
∫ t

0
(ηs)

ids, we require ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0.

4.1 Overview
Under (L0, L1)-smoothness, our insights concern the structure of η for convergence, where ηηt is the actual
learning rate and ηt is a predetermined scheduler: See Fig. 1 for empirical validation.
• Thm. 4.1 shows that the dynamics of the DSGD model can converge to a first-order stationary point in

expectation even when ∃i s.t. σ2
1,i > 0, yet the learning rate ηt is required to scale inversely to the gradient

norm – i.e. needs to be adaptive;
• Thm. 4.2 operates in the compressed unbiased gradient setting. The insights are similar to Thm. 4.1 yet

assume bounded variance for pedagogical purposes only: Thm. 4.3 covers the more general (σ2
0,i, σ

2
1,i)-

variance case;
• Thm. 4.4 shows that the DSignSGD model does not require adaptive learning rate to converge: Not even

when the expectation of the batch noise is unbounded – The intuition is that DSignSGD is already
normalized.
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Figure 1: We optimize f(x) = x4

4 with batch noise of variance σ2∥∇f(x)∥22 for different values of
σ: As per Thm. 4.1, DSGD diverges faster and faster for larger values of σ if normalization is
not employed (Top-Left) but always converges if it is employed (Bottom-Left); We optimize

f(x) =
∑1000

j=1 (xj)
4

4 with batch noise of variance σ2∥∇f(x)∥22 and use Random Sparsification for
different compression rates ω: As per Thm. 4.2, DCSGD diverges faster and faster for larger values
of ω if normalization is not employed but always converges if it is employed (Bottom-Center);
We optimize f(x) = x4

4 with batch noise of unbounded expected value and for different scale
parameters σ: As per Thm. 4.4, DSignSGD does not converge to 0 without a proper learning rate
scheduler (Top-Right), but does converge with (Bottom-Right)

4.2 Results
We state the SDE models directly in the appendix and indicate the setting with blue color.

Theorem 4.1. (DSGD, unbounded variance) Let f be (L0, L1)-smooth, and each agent have (σ2
0,i, σ

2
1,i)-

variance. Define σ2
0 := 1

N

∑N
i=1 σ

2
0,i and σ2

1 := 1
N

∑N
i=1 σ

2
1,i. For an arbitrary ϵ ∈ (0, 1), assume

ηηt <
2ϵ

(L0+L1E[∥∇f(Xt)∥])
(
1+

dσ2
1

N

)
+ d

N σ2
0L1

. (1)

Then, for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥22

]
≤ 1

ϕ1
t (1−ϵ)

(
f(X0)− f(X∗) +

ηϕ2
t

2N (L0 + L1)dσ2
0

)
t→∞→ 0. (2)

Intuition: This result showcases the crucial role of the regularity of the loss landscape as well as its interaction
with the gradient noise structure. Even in the noiseless setup, normalizing the update step naturally emerges
as a condition to ensure convergence. Additionally: i) L1σ2

1 > 0 requires stronger adaptivity; ii) σ0 = σ1 = 0
recovers the standard stepsize schedule derived under L-smoothness, i.e. ηηt <

2
L0

.

Theorem 4.2. (DCSGD, unbiased compression, bounded variance) Let f be (L0, L1)-smooth and
each agent i have bounded variance σ2

i , σ2 := 1
N

∑N
i=1 σ

2
i , and σ2ω := 1

N

∑N
i=1 σ

2
i ωi. For arbitrary ϵ ∈ (0, 1),

assume
ηηt <

2ϵ

(L0 + L1E [∥∇f(Xt)∥2])
(
1 + ω

N

)
+

d(σ2+σ2ω)L1

N

. (3)

Then, for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥22

]
≤ 1

ϕ1
t (1−ϵ)

(
f(X0)− f(X∗) + ϕ2

t
η(L0+L1)d

2N

(
σ2 + σ2ω

))
t→∞→ 0. (4)
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Intuition: This result showcases the crucial role of the regularity of the loss landscape and its interaction
with gradient compression: i) Compressing the gradients, i.e. ω > 0, requires stronger adaptivity; ii) One can
draw a parallel between the normalization requirement for DSGD prescribed in Eq. 1 and that of DCSGD in
Eq. 3 — DCSGD with bounded variance σ2 and compression rate ω is essentially equivalent to DSGD with
(σ2

0 , σ
2
1)-variance where σ2

0 = d(σ2 + ωσ2) and σ2
1 = ω

d .

One can generalize this result to cover the potentially unbounded variance setting.

Theorem 4.3. (DCSGD, unbiased compression, unbounded variance) Let f be (L0, L1)-smooth, and
each agent have (σ2

0,i, σ
2
1,i)-variance. Define σ2

0 := 1
N

∑N
i=1 σ

2
0,i, σ2

1 := 1
N

∑N
i=1 σ

2
1,i, σ2

0ω := 1
N

∑N
i=1 σ

2
i,0ωi,

and σ2
1ω := 1

N

∑N
i=1 σ

2
i,1ωi. For an arbitrary ϵ ∈ (0, 1), assume

ηηt <
2ϵ

(L0 + L1E [∥∇f(Xt)∥2])
(
1 +

ω+d(σ2
1ω+σ2

1)
N

)
+

L1d
(
σ2
0+σ2

0ω
)

N

. (5)

Then, for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

(1− ϵ)ϕ1
t

(
f(X0)− f(X∗) + ϕ2

t

η(L0 + L1)d(σ2
0 + σ2

0ω)

2N

)
t→∞→ 0. (6)

Intuition: This result showcases the crucial role of the regularity of the loss landscape, the gradient noise
structure, and the compression scheme: If L1(ω + d(σ2

1ω + σ2
1)) > 0, stronger adaptivity is required.

DSignSGD, structured noise, unbounded expected value. To provide tight results for the con-
vergence of DSignSGD under unbounded second and even first moments, we additionally assume
structured (heavy-tailed) noise following a student-t distribution: ∇fγi

(x) = ∇f(x)+
√
ΣiZi s.t. Zi ∼ tν(0, Id),

ν are the d.o.f, and scale matrices1 Σi = diag(σ2
1,i, · · · , σ2

d,i). Note that if ν = 1, the expected value of Zi

is unbounded, thus modeling much more pathological noise than simple (σ2
0 , σ

2
1)-variance.

Theorem 4.4. Let f be (L0, L1)-smooth, Σi ≤ σ2
max,i, σH,1 be the harmonic mean of {σmax,i}, Mν > 0 and

ℓν > 0 constants, and K :=

(
L1

2N +
(L0+L1)σ

−1
H,1Mν√

d

)
. Then, for a scheduler ηηt <

ℓνK
−1

σH,1d
and a random time

t̃ with distribution
ηtℓνσ

−1
H,1−η2

tK

ϕ1
t ℓνσ

−1
H,1−ϕ2

tK
, we have that

E∥∇f (Xt̃)∥
2
2 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

tK

(
f(X0)− f(X∗) + ϕ2

tη(L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

))
t→∞→ 0. (7)

5 Conclusion
In this paper, we provided the first application of SDEs to (L0, L1)-smooth problems, deriving the first
convergence guarantees for DSGD, DCSGD, and DSignSGD under such a condition as we coupled it with
flexible batch noise assumptions. Importantly, we show that some sort of adaptivity is beneficial to ensure the
convergence of stochastic optimizers. On one hand, an adaptive method such as DSignSGD converges even
under heavy-tailed noise of unbounded expected value. On the other hand, for DCSGD normalizing the
updates emerges naturally as a strategy to ensure convergence, and even more so if either the compression rate
ω or the σ2

1 is positive. These findings prompt us to include the study of Normalized SGD under heavy-tailed
noise in future work. Our final message is that the success of adaptive methods in Deep Learning has to be
partially credited to the fact that their updates are, to some extent, normalized, thus actively countering the
destabilizing effects of ill-conditioned landscapes even under large and possibly heavy-tailed noise.

1These are not covariance matrices, but we use the same notation to facilitate comparability.
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A Theoretical Results

A.1 Distributed SGD

A.1.1 First Order SDE

The following is the first-order SDE model of DSGD (see Theorem 3.2 in Compagnoni et al. [2025a]). Let us
consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt+

√
η

N

√
Σ̂(Xt)dWt, (8)

where Σ̂(x) := 1
N

∑N
i=1 Σi(x) is the average of the covariance matrices of the N agents.

Theorem A.1. Let f be (L0, L1)-smooth, ∥Σi(x)∥∞ < σ2
0,i + σ2

1,i∥∇f(x)∥22, the learning rate scheduler ηt

s.t. ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, and σ2

1 := 1
N

∑N
i=1 σ

2
1,i. Then, for 0 < ϵ < 1,

ηηt <
2Nϵ

d
(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥2]

) , (9)

and for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

ηd(L0 + L1)(σ2
0 + σ2

1)

2N

)
t→∞→ 0. (10)

Proof. Using Itô’s Lemma and using a learning rate scheduler ηt during the derivation of the SDE, we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (11)

≤ −ηt∥∇f(Xt)∥22dt+O(Noise) (12)

+ (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt. (13)

Phase 1: If ∥∇f(Xt)∥ ≤ 1, then the proof and conditions are the same as the L-smoothness case. Let us
observe that since

∫ t

0
ηs

ϕ1
t
ds = 1, the function s 7→ ηs

ϕ1
t

defines a probability distribution and let t̃ have that
distribution. Then, by integrating over time and by the Law of the Unconscious Statistician, we have that

E
[
∥∇f(Xt̃)∥22

]
=

1

ϕ1
t

∫ t

0

∥∇f(Xs)∥22ηsds, (14)

meaning that

E
[
∥∇f(Xt̃)∥22

]
≤ f(X0)− f(X∗)

ϕ1
t

+
η(L0 + L1)(σ2

0 + σ2
1)d

2N

ϕ2
t

ϕ1
t

t→∞→ 0. (15)

Phase 2: If ∥∇f(Xt)∥ > 1, we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (16)

≤ −ηt∥∇f(Xt)∥22dt+O(Noise) (17)

+ (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt (18)

= −ηt∥∇f(Xt)∥22
(
1− ηtηd

2N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

))
dt (19)

+ (ηt)
2 ησ

2
0dL0

2N
dt (20)

Therefore, for 0 < ϵ < 1 we have that if

ηηt <
2Nϵ

d
(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

) , (21)
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and therefore that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

ηL0dσ2

2N

)
t→∞→ 0, (22)

where t̂, is a random time with distribution ηt̂

ϕ1
t
.

By taking a worst-case scenario approach, we merge these two bounds into a single one:

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22
(
1− ηtηd

2N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

))
dt (23)

+ (ηt)
2 ηd(L0 + L1)(σ2

0 + σ2
1)

2N
dt, (24)

and, therefore, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

ηd(L0 + L1)(σ2
0 + σ2

1)

2N

)
t→∞→ 0, (25)

where t̂, is a random time with distribution ηt̂

ϕ1
t
.

Finally, for practical reasons, we leverage the distributed setting to tighten the requirements on the learning
rate scheduler to make it experimentally viable, and rather require

ηηt <
2Nϵ

d
(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥2)

] . (26)

A.1.2 Second Order SDE

The following is the second-order SDE model of DSGD and is a straightforward generalization of Theorem 3.2
in Compagnoni et al. [2025a]. Let us consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt−
η

2
∇2f(Xt)∇f(Xt)dt+

√
η

N

√
Σ̂(Xt)dWt, (27)

where Σ̂(x) := 1
N

∑N
i=1 Σi(x) is the average of the covariance matrices of the N agents.

Theorem A.2. Let f be (L0, L1)-smooth, ∥Σi(x)∥∞ < σ2
0,i + σ2

1,i∥∇f(x)∥22, the learning rate scheduler ηt

s.t. ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, and σ2

1 := 1
N

∑N
i=1 σ

2
1,i. Then, for 0 < ϵ < 1,

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥] + d
N

(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥]

) , (28)

and for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) +

ηϕ2
t

2N
(L0 + L1)dσ2

0

)
t→∞→ 0. (29)

Proof. Using Itô’s Lemma and using a learning rate scheduler ηt during the derivation of the SDE, we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt−
ηη2t
2

(∇f(Xt))
⊤ ∇2f(Xt)∇f(Xt)dt (30)

+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (31)

≤ −ηt∥∇f(Xt)∥22dt+
ηη2t
2

(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt (32)

+O(Noise) + (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt. (33)
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Phase 1: If ∥∇f(Xt)∥ ≤ 1,

∥∇f(Xt)∥22

(
ηt −

ηη2t
2

(L0 + L1∥∇f(Xt)∥2)

(
1 +

dσ2
1

N

))
dt ≤ −d(f(Xt)−f(X∗))+

ηη2t
2N

.(L0+L1)dσ2
0dt (34)

Therefore, for ϵ ∈ (0, 1), we have that

ηηt <
2ϵ

(L0 + L1∥∇f(Xt)∥2)
(
1 +

dσ2
1

N

) <
2

(L0 + L1)

(
1 +

dσ2
1

N

) (35)

meaning that

E
[
∥∇f(Xt̃)∥22

]
≤ 1

ϕ1
t − ϕ2

t
η
2 (L0 + L1)

(
1 +

dσ2
1

N

) (f(X0)− f(X∗) +
ηϕ2

t

2N
(L0 + L1)dσ2

0

)
t→∞→ 0. (36)

Phase 2: If ∥∇f(Xt)∥ > 1, we have

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) + (ηt)
2 η

2N
Tr(∇2f(Xt)Σ̃(Xt))dt (37)

≤ −ηt∥∇f(Xt)∥22dt+
ηη2t
2

(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt (38)

+O(Noise) + (ηt)
2 η(σ

2
0 + σ2

1∥∇f(Xt)∥22)d(L0 + L1∥∇f(Xt)∥)
2N

dt (39)

= −ηt∥∇f(Xt)∥22
(
1− ηtη

2

(
L0 + L1∥∇f(Xt)∥+

d

N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

)))
dt

(40)

+ (ηt)
2 ησ

2
0dL0

2N
dt (41)

Therefore, for 0 < ϵ < 1 we have that if

ηηt <
2ϵ

L0 + L1∥∇f(Xt)∥+ d
N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

) , (42)

and therefore that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

ηL0dσ2

2N

)
t→∞→ 0, (43)

where t̂, is a random time with distribution ηt̂

ϕ1
t
.

By taking a worst-case scenario approach, we merge these two bounds into a single one:

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22
(
1− ηtη

2

(
L0 + L1∥∇f(Xt)∥+

d

N

(
σ2
1L0 + σ2

0L1 + L1σ2
1∥∇f(Xt)∥2

)))
dt

(44)

+ (ηt)
2 η

2N
(L0 + L1)dσ2

0dt, (45)

and, therefore, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) +

ηϕ2
t

2N
(L0 + L1)dσ2

0

)
t→∞→ 0, (46)

where t̂, is a random time with distribution ηt̂

ϕ1
t
.
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Finally, for practical reasons, we leverage the distributed setting to tighten the requirements on the learning
rate scheduler to make it experimentally viable, and rather require

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥] + d
N

(
σ2
1L0 + σ2

0L1 + L1σ2
1E [∥∇f(Xt)∥]

) . (47)

A.2 Distributed Compressed SGD with Unbiased Compression

A.2.1 First Order SDE

The following is the first-order SDE model of DCSGD (see Theorem 3.6 in Compagnoni et al. [2025a]). Let
us consider the stochastic process Xt ∈ Rd defined as the solution of

dXt = −∇f(Xt)dt+

√
η

N

√
Σ̃(Xt)dWt, (48)

where for Φξi,γi(x) := Cξi (∇fγi(x))−∇fγi(x)

Σ̃(x) =
1

N

N∑
i=1

(
Eξiγi

[
Φξi,γi(x)Φξi,γi(x)

⊤]+Σi(x)
)
. (49)

Theorem A.3. Let f be (L0, L1)-smooth, the learning rate scheduler ηt such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞,
ϕ2
t

ϕ1
t

t→∞→ 0, and σ2ω := 1
N

∑N
i=1 σ

2
i ωi. Then, for 0 < ϵ < 1,

ηηt <
2Nϵ

ωL0 +
(
σ2d+ dσ2ω

)
L1 + ωL1E [∥∇f(Xt)∥2]

, (50)

and for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

f(X0)− f(X∗) + ϕ2
t

η(L0 + L1)d
(
σ2 + σ2ω

)
2N

 t→∞→ 0. (51)

Proof. Since it holds that

Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22 ≤ ωi∥∇f(x)∥22 + dσ2
i (ωi + 1),

we have that

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt+O(Noise) (52)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
1

N

N∑
i=1

Eξi,γi
∥(Cξi (∇fγi

(x))−∇f(x))∥22

)
dt (53)

≤ −ηt∥∇f(Xt)∥22dt+O(Noise) (54)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt (55)

Phase 1: If ∥∇f(Xt)∥2 ≤ 1, then we have that

E
[
∥∇f(Xt)∥22

](
ηt −

η(L0 + L1)ω

2N
(ηt)

2

)
dt ≤ −d(f(Xt)− f(X∗)) (56)

+ (ηt)
2 η(L0 + L1)d

2N

(
σ2 + σ2ω

)
dt. (57)

Let us now observe that since
∫ t

0

ηs− η(L0+L1)ω
2N η2

s

ϕ1
t−

η(L0+L1)ω
2N ϕ2

t

ds = 1, the function s 7→ ηs− η(L0+L1)ω
2N η2

s

ϕ1
t−

η(L0+L1)ω
2N ϕ2

t

defines a probability

distribution and let t̃ have that distribution. Then by integrating over time and by the Law of the Unconscious
Statistician, we have that

E
[
∥∇f(Xt̃)∥22

]
=

1

ϕ1
t −

η(L0+L1)ω
2N ϕ2

t

∫ t

0

∥∇f(Xs)∥22
(
ηs −

η(L0 + L1)ω

2N
η2s

)
ds, (58)
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meaning that

E
[
∥∇f(Xt̃)∥22

]
≤ 1

ϕ1
t −

η(L0+L1)ω
2N ϕ2

t

(
f(X0)− f(X∗) + ϕ2

t

η(L0 + L1)d

2N

(
σ2 + σ2ω

))
t→∞→ 0, (59)

where t̃, is a random time with distribution ηt̃−
η(L0+L1)ω

2N (ηt̃)
2

ϕ1
t−

η(L0+L1)ω
2N ϕ2

t

.

Phase 2: If ∥∇f(Xt)∥2 > 1, we have that

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22dt+O(Noise) (60)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt (61)

≤ −ηt∥∇f(Xt)∥22
(
1− ηtη

2N

(
ωL0 + d

(
σ2 + σ2ω

)
L1 + ωL1∥∇f(Xt)∥2

))
dt (62)

+ η2t
ηL0d

2N

(
σ2 + σ2ω

)
dt. (63)

Therefore, for 0 < ϵ < 1 we have that if

ηηt <
2Nϵ

ωL0 + d
(
σ2 + σ2ω

)
L1 + ωL1∥∇f(Xt)∥2

, (64)

then,

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

ηL0d

2N

(
σ2 + σ2ω

))
t→∞→ 0, (65)

where t̂, is a random time with distribution ηt̂

ϕ1
t
. Finally, for practical reasons, we leverage the distributed

setting to tighten the requirements on the learning rate scheduler to make it experimentally viable, and
rather require

ηηt <
2Nϵ

ωL0 +
(
σ2d+ dσ2ω

)
L1 + ωL1E [∥∇f(Xt)∥2]

, (66)

By taking a worst-case scenario approach, we merge these two bounds into a single one and have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

f(X0)− f(X∗) + ϕ2
t

η(L0 + L1)d
(
σ2 + σ2ω

)
2N

 t→∞→ 0, (67)

where t̂, is a random time with distribution ηt̂

ϕ1
t
.

Finally, one can generalize this result to cover the (σ2
0 , σ

2
1)-Variance.

Theorem A.4. Let f be (L0, L1)-smooth, max(Σi(x)) < σ2
i,0 + σ2

i,1∥∇f(x)∥22, the learning rate scheduler ηt

such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, σ2

1 := 1
N

∑N
i=1 σ

2
1,i, σ2

0ω := 1
N

∑N
i=1 σ

2
i,0ωi,

and σ2
1ω := 1

N

∑N
i=1 σ

2
i,1ωi. Then, for 0 < ϵ < 1,

ηηt <
2Nϵ

L0(ω + d(σ2
1ω + σ2

1)) + L1d
(
σ2
0 + σ2

0ω
)
+ L1(ω + d(σ2

1ω + σ2
1))E [∥∇f(Xt)∥2]

, (68)

and for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

(1− ϵ)ϕ1
t

f(X0)− f(X∗) + ϕ2
t

L0(ω + d(σ2
1ω + σ2

1)) + L1d
(
σ2
0 + σ2

0ω
)

2N

 t→∞→ 0. (69)
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A.2.2 Second Order SDE

The following is the second-order SDE model of DCSGD and is a straightforward generalization of Theorem
3.6 in Compagnoni et al. [2025a]. Let us consider the stochastic process Xt ∈ Rd defined as the solution
of

dXt = −∇f(Xt)dt−
η

2
∇2f(Xt)∇f(Xt)dt+

√
η

N

√
Σ̃(Xt)dWt, (70)

where for Φξi,γi(x) := Cξi (∇fγi(x))−∇fγi(x)

Σ̃(x) =
1

N

N∑
i=1

(
Eξiγi

[
Φξi,γi

(x)Φξi,γi
(x)⊤

]
+Σi(x)

)
. (71)

Theorem A.5. Let f be (L0, L1)-smooth, the learning rate scheduler ηt such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞,
ϕ2
t

ϕ1
t

t→∞→ 0, and σ2ω := 1
N

∑N
i=1 σ

2
i ωi. Then, for 0 < ϵ < 1,

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥2] +
ωL0+d(σ2+σ2ω)L1+ωL1E[∥∇f(Xt)∥2]

N

, (72)

and for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

η(L0 + L1)d

2N

(
σ2 + σ2ω

))
t→∞→ 0. (73)

Proof. Since it holds that

Eξi,γi∥(Cξi (∇fγi(x))−∇f(x))∥22 ≤ ωi∥∇f(x)∥22 + dσ2
i (ωi + 1),

we have that

d(f(Xt)− f(X∗)) = −ηt∥∇f(Xt)∥22dt−
ηη2t
2

(∇f(Xt))
⊤ ∇2f(Xt)∇f(Xt)dt+O(Noise) (74)

+
ηη2t
2

(L0 + L1∥∇f(Xt)∥2)
N

(
1

N

N∑
i=1

Eξi,γi∥(Cξi (∇fγi(x))−∇f(x))∥22

)
dt (75)

≤ −ηt∥∇f(Xt)∥22dt+
ηη2t
2

(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt+O(Noise) (76)

+
ηη2t
2

(L0 + L1∥∇f(Xt)∥2)
N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt (77)

Phase 1: If ∥∇f(Xt)∥2 ≤ 1, then we have that

E
[
∥∇f(Xt)∥22

](
ηt −

η2t η

2
(L0 + L1)

(
1 +

ω

N

))
dt ≤ −d(f(Xt)− f(X∗)) (78)

+ (ηt)
2 η(L0 + L1)d

2N

(
σ2 + σ2ω

)
dt. (79)

Let us now observe that since
∫ t

0

ηs−
η2
sη

2 (L0+L1)(1+ ω
N )

ϕ1
t−

η
2 (L0+L1)(1+ ω

N )ϕ2
t

ds = 1, the function s 7→ ηs−
η2
sη

2 (L0+L1)(1+ ω
N )

ϕ1
t−

η
2 (L0+L1)(1+ ω

N )ϕ2
t

defines

a probability distribution and let t̃ have that distribution. Then, by integrating over time and by the Law of
the Unconscious Statistician, we have that

E
[
∥∇f(Xt̃)∥22

]
=

1

ϕ1
t −

η
2 (L0 + L1)

(
1 + ω

N

)
ϕ2
t

∫ t

0

∥∇f(Xs)∥22
(
ηs −

η

2
(L0 + L1)

(
1 +

ω

N

)
η2s

)
ds, (80)

meaning that

E
[
∥∇f(Xt̃)∥22

]
≤ 1

ϕ1
t −

η
2 (L0 + L1)

(
1 + ω

N

)
ϕ2
t

(
f(X0)− f(X∗) + ϕ2

t

η(L0 + L1)d

2N

(
σ2 + σ2ω

))
t→∞→ 0,

(81)

14



where t̃, is a random time with distribution
ηt̃−

η
2 (L0+L1)(1+ ω

N )(ηt̃)
2

ϕ1
t−

η
2 (L0+L1)(1+ ω

N )ϕ2
t

.

Phase 2: If ∥∇f(Xt)∥2 > 1, we have that

d(f(Xt)− f(X∗)) ≤ −ηt∥∇f(Xt)∥22dt+
ηη2t
2

(L0 + L1∥∇f(Xt)∥)∥∇f(Xt)∥2dt+O(Noise) (82)

+ (ηt)
2 η(L0 + L1∥∇f(Xt)∥2)

2N

(
ω∥∇f(Xt)∥22 + σ2d+ dσ2ω

)
dt (83)

≤ −ηt∥∇f(Xt)∥22

1− ηtη

2

L0 + L1∥∇f(Xt)∥2 +
ωL0 + d

(
σ2 + σ2ω

)
L1 + ωL1∥∇f(Xt)∥2
N


(84)

+ η2t
ηL0d

2N

(
σ2 + σ2ω

)
. (85)

Therefore, for 0 < ϵ < 1 we have that if

ηηt <
2ϵ

L0 + L1∥∇f(Xt)∥2 +
ωL0+d(σ2+σ2ω)L1+ωL1∥∇f(Xt)∥2

N

, (86)

then,

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

(
f(X0)− f(X∗) + ϕ2

t

η(L0 + L1)d

2N

(
σ2 + σ2ω

))
t→∞→ 0, (87)

where t̂, is a random time with distribution ηt̂

ϕ1
t
. Finally, for practical reasons, we leverage the distributed

setting to tighten the requirements on the learning rate scheduler to make it experimentally viable, and
rather require

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥2] +
ωL0+d(σ2+σ2ω)L1+ωL1E[∥∇f(Xt)∥2]

N

, (88)

By taking a worst-case scenario approach, we merge these two bounds into a single one and have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

ϕ1
t (1− ϵ)

f(X0)− f(X∗) + ϕ2
t

η(L0 + L1)d
(
σ2 + σ2ω

)
2N

 t→∞→ 0, (89)

where t̂, is a random time with distribution ηt̂

ϕ1
t
.

Finally, one can generalize this result to cover the (σ2
0 , σ

2
1)-Variance.

Theorem A.6. Let f be (L0, L1)-smooth, max(Σi(x)) < σ2
i,0 + σ2

i,1∥∇f(x)∥22, the learning rate scheduler ηt

such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞, ϕ2
t

ϕ1
t

t→∞→ 0, σ2
0 := 1

N

∑N
i=1 σ

2
0,i, σ2

1 := 1
N

∑N
i=1 σ

2
1,i, σ2

0ω := 1
N

∑N
i=1 σ

2
i,0ωi,

and σ2
1ω := 1

N

∑N
i=1 σ

2
i,1ωi. Then, for 0 < ϵ < 1,

ηηt <
2ϵ

L0 + L1E [∥∇f(Xt)∥2] +
L0(ω+d(σ2

1ω+σ2
1))+L1d

(
σ2
0+σ2

0ω
)
+L1(ω+d(σ2

1ω+σ2
1))E[∥∇f(Xt)∥2]

N

, (90)

and for a random time t̂ with distribution ηt

ϕ1
t
, we have that

E
[
∥∇f(Xt̂)∥

2
2

]
≤ 1

(1− ϵ)ϕ1
t

(
f(X0)− f(X∗) + ϕ2

t

η(L0 + L1)d(σ2
0 + σ2

0ω)

2N

)
t→∞→ 0. (91)

A.3 Distributed SignSGD

A.3.1 First Order SDE

The following is the first-order SDE model of DSignSGD (see Theorem 3.10 in Compagnoni et al. [2025a]).
Let us consider the stochastic process Xt ∈ Rd defined as the solution of
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dXt = − 1

N

N∑
i=1

(1− 2P(∇fγi
(Xt) < 0)) dt+

√
η

N

√
Σ(Xt)dWt. (92)

where

Σ(Xt) :=
1

N

N∑
i=1

Σi(Xt), (93)

and Σi(x) = E[ξγi(x)ξγi(x)
⊤] where ξγi(x) := sign(∇fγi(x))− 1 + 2P(∇fγi(x) < 0) the noise in the sample

sign (∇fγi
(x)).

Corollary A.7 ( Corollary C.10 in Compagnoni et al. [2025a]). If the stochastic gradients are ∇fγi(x) =
∇f(x)+

√
ΣiZi such that Zi ∼ tν(0, Id) does not depend on x, ν are the degrees of freedom, and scale matrices

Σi = diag(σ2
1,i, · · · , σ2

d,i). Then, the SDE of DSignSGD is

dXt = − 2

N

N∑
i=1

Ξν

(
Σ

− 1
2

i ∇f(Xt)
)
dt+

√
η

N

√
Σ̃(Xt)dWt. (94)

where Ξν(x) is defined as Ξν(x) := x
Γ( ν+1

2 )
√
πνΓ( ν

2 )
2F1

(
1
2 ,

ν+1
2 ; 3

2 ;−
x2

ν

)
, 2F1 (a, b; c;x) is the hypergeometric

function, and

Σ̃(Xt) := Id −
4

N

N∑
i=1

(
Ξν

(
Σ

− 1
2

i ∇f(Xt)
))2

. (95)

In the following, the constant ℓν is defined in Proposition C.11 of Compagnoni et al. [2025a].

Theorem A.8. Let f be (L0, L1)-smooth, ηt a learning rate scheduler such that ϕi
t =

∫ t

0
(ηs)

ids, ϕ1
t

t→∞→ ∞,
ϕ2
t

ϕ1
t

t→∞→ 0, Σi ≤ σ2
max,i, σH,1 be the harmonic mean of {σmax,i}, and ℓν > 0 a constant. Then, for a scheduler

ηηt <
2Nℓν

σH,1dL1
and a random time t̃ with distribution

ηtℓνσ
−1
H,1−η2

t
ηL1d
2N

ϕ1
t ℓνσ

−1
H,1−ϕ2

t
ηL1d
2N

, we have that

E∥∇f (Xt̃)∥22 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

t
ηL1d
2N

(
f(X0)− f(X∗) +

η(L0 + L1)dϕ
2
t

2N

)
t→∞→ 0. (96)

Proof. By Ito Lemma on f(Xt)− f(X∗), we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2t d

2N
(L0 + L1∥∇f(Xt)∥2)dt (97)

Phase 1: ∥∇f(Xt)∥2 ≤ 1:

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2t d

2N
(L0 + L1)dt. (98)

Phase 2: ∥∇f(Xt)∥2 > 1:

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2t dL1∥∇f(Xt)∥22
2N

+
ηη2t dL0

2N
dt. (99)

By taking the worst case of these two phases, we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+

ηη2t dL1∥∇f(Xt)∥22
2N

dt+
ηη2t d

2N
(L0 + L1)dt, (100)

meaning that

E∥∇f (Xt̃)∥22 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

t
dηL1

2N

(
f(X0)− f(X∗) +

η(L0 + L1)dϕ
2
t

2N

)
t→∞→ 0. (101)
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A.3.2 Second Order SDE

The following is the second-order SDE model of DSignSGD and is a straightforward generalization of Corollary
C.10 in Compagnoni et al. [2025a], and we observe that Ξ

′

ν(x) is bounded by a positive constant Mν .

dXt = − 2

N

N∑
i=1

Ξν

(
Σ

− 1
2

i ∇f(Xt)
)
dt− η

N

N∑
i=1

Σ
− 1

2
i ∇2f(Xt)

(
Ξ

′

ν

(
Σ

− 1
2

i ∇f(Xt)
)
◦ Ξν

(
Σ

− 1
2

i ∇f(Xt)
))

dt

+

√
η

N

√
Σ̃(Xt)dWt. (102)

Theorem A.9. Let f be (L0, L1)-smooth, Σi ≤ σ2
max,i, σH,1 be the harmonic mean of {σmax,i}, Mν > 0 and

ℓν > 0 constants, and K :=

(
L1

2N +
(L0+L1)σ

−1
H,1Mν√

d

)
. Then, for a scheduler ηηt <

ℓνK
−1

σH,1d
and a random time

t̃ with distribution
ηtℓνσ

−1
H,1−η2

tK

ϕ1
t ℓνσ

−1
H,1−ϕ2

tK
, we have that

E∥∇f (Xt̃)∥22 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

tK

(
f(X0)− f(X∗) + ϕ2

tη(L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

))
t→∞→ 0. (103)

Proof. By Ito Lemma on f(Xt)− f(X∗), we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2t σ

−1
H,1(L0 + L1∥∇f(Xt)∥2)Mν∥∇f(Xt)∥1dt (104)

+
ηη2t d

2N
(L0 + L1∥∇f(Xt)∥2)dt (105)

Phase 1: ∥∇f(Xt)∥2 ≤ 1:

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2t σ

−1
H,1(L0 + L1)Mν

√
ddt (106)

+
ηη2t d

2N
(L0 + L1)dt. (107)

Phase 2: ∥∇f(Xt)∥2 > 1: Since ∥∇f(Xt)∥1 <
√
d∥∇f(Xt)∥2 <

√
d∥∇f(Xt)∥22, we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2t σ

−1
H,1(L0 + L1)Mν

√
d∥∇f(Xt)∥22dt (108)

+
ηη2t dL1∥∇f(Xt)∥22

2N
+

ηη2t dL0

2N
dt. (109)

By taking the worst case of these two phases, we have that

d(f(Xt)− f(X∗)) ≤ −ℓνσ
−1
H,1ηt∥∇f(Xt)∥22dt+ ηη2t σ

−1
H,1(L0 + L1)Mν

√
d∥∇f(Xt)∥22dt (110)

+
ηη2t dL1∥∇f(Xt)∥22

2N
dt+ ηη2t (L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

)
dt, (111)

meaning that

E∥∇f (Xt̃)∥
2
2 ≤ 1

ϕ1
t ℓνσ

−1
H,1 − ϕ2

tdη

(
L1
2N

+
(L0+L1)σ

−1
H,1

Mν
√
d

) (
f(X0)− f(X∗) + ϕ2

tη(L0 + L1)d

(
1

2N
+

Mν

σH,1

√
d

))
t→∞→ 0.

(112)

A.4 Limitations
As noted by Li et al. [2021], the approximation power of SDEs can fail when the stepsize η is large or
if certain conditions on ∇f and the noise covariance matrix are not met. Although these issues can be
addressed by increasing the order of the weak approximation, we believe that the primary purpose of SDEs is
to serve as simplification tools that enhance our intuition: We would not benefit significantly from added
complexity.

Importantly, extensive experimental design empirically validated that the SDEs do track their respective
optimizers precisely on a variety of architectures, including MLPs, CNNs, ResNets, and ViTs, [Paquette
et al., 2021, Compagnoni et al., 2024, 2025b,a].
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B Experiments

B.1 DSGD - Figure 1 - (Left Column)

We optimize f(x) = x4

4 as we inject gaussian noise with mean 0 and variance σ2∥∇f(x)∥22 on the gradient.
The learning rate is η = 0.01, σ ∈ {3, 4, 5}, and we average over 1000 runs. In the top figure, we use no
scheduler, while in the bottom one we use a scheduler as per Eq. 1.

B.2 DCSGD - Figure 1 - (Center Column)

We optimize f(x) =
∑1000

j=1 (xj)
4

4 as we inject gaussian noise with mean 0 and variance σ2∥∇f(x)∥22 on the
gradient. The learning rate is η = 0.1, σ = 0.1}, we use random sparsification with ω ∈ {4, 8, 16}, and we
average over 1000 runs. In the top figure, we use no scheduler, while in the bottom one we use a scheduler as
per Eq. 3.

B.3 DSignSGD - Figure 1 - (Right Column)

We optimize f(x) = x4

4 as we inject student’s t noise with ν = 1 and scale parameters σ on the gradient. The
learning rate is η = 0.1, σ ∈ {0.25, 0.5, 1, 2, 8, 16}, and we average over 10000 runs. In the top figure, we use
no scheduler, while in the bottom one we use a scheduler as per Theorem 4.4, e.g. ηt =

1√
t+1

.
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